This monograph discusses the use of guaifenesin; phenylephrine combination products. Clinicians may wish to consult the individual monographs for more information about each agent.
Guaifenesin and phenylephrine are used together in an oral preparation. Guaifenesin is an expectorant that loosens and thins sputum and bronchial secretions to ease expectoration; the drug has no antitussive activity. Phenylephrine is a sympathomimetic decongestant agent that causes vasoconstriction and decreases nasal congestion. Guaifenesin is used for dry, nonproductive cough when there is the presence of tenacious mucus and/or mucus plugs. The results of a few studies have favored active treatment with guaifenesin over placebo in treating productive cough due to upper respiratory illness (URI). In patients with chronic bronchitis, guaifenesin, is not recommended for aiding with cough suppression since studies have shown no benefit in reducing cough. However, the mucolytic properties of guaifenesin may be independently helpful in clearing mucus, and patients may subjectively report benefit to use. Products containing guaifenesin; phenylephrine are primarily used for the temporary relief of congestion associated with the common cold and other upper respiratory conditions in adults and pediatric patients 4 years and older.
General Administration Information
For storage information, see the specific product information within the How Supplied section.
Route-Specific Administration
Oral Administration
-Guaifenesin; phenylephrine products are administered orally. May take with water, food or milk to minimize gastric irritation.
Oral Solid Formulations
-Immediate-release tablets: Administer last dose 2 hours before bedtime to minimize insomnia due to phenylephrine.
-Extended-release or sustained-release tablets: Swallow whole; do not crush or chew. Scored tablets may be divided in half.
-Extended-release or sustained release capsules: Swallow whole; do not open, crush or chew.
Oral Liquid Formulations
-Oral liquids and syrups: Administer guaifenesin; phenylephrine using a calibrated measuring device to give an accurate dosage. Note that some oral liquids may contain alcohol.
This monograph discusses the adverse reactions of a combination product. Clinicians may wish to consult the individual monographs for more information about the specific adverse reactions of each agent.
Adverse effects of the guaifenesin-phenylephrine combination products are most frequently related to dosage and formulation of the phenylephrine component. In general, adverse reactions to the guaifenesin component are infrequent and usually not serious.
Excessive use or dosage of guaifenesin may result in nephrolithiasis; the resulting renal stones have been documented to contain guaifenesin metabolites including the active metabolite, beta-(2-methoxyphenoxy)-lactic acid. In another report, 11 of 24 patients with kidney stones containing the guaifenesin metabolite, beta-(2-methoxyphenoxy)-lactic acid, were using excessive amounts of over-the-counter stimulants and bronchodilators (stated dosages of 3 to 120 tablets/day or approximately 600 to 24,000 mg/day of guaifenesin); some patients had a history of substance abuse.
Potential adverse CNS effects of phenylephrine, especially at high dosage, include anxiety, excitability, dizziness, tremor, confusion, hallucinations or psychosis (rare) or delirium (rare), insomnia, panic and restlessness. In overdose, convulsions (seizures) may occur, particularly in sensitive groups like the elderly.
Phenylephrine is a powerful vasoconstrictor, especially at high dosage, and may cause systolic or diastolic hypertension in susceptible patients, which may be accompanied by myocardial ischemia (angina) and/or marked reflex sinus bradycardia. An increased workload on the heart increases the risk of heart failure. Headache may be a sign of hypertension. In general, elderly patients are more susceptible than younger adults are to sympathomimetic effects. Rarely, serious cardiac events including sinus tachycardia, cardiac arrhythmia exacerbation (ventricular tachycardia or bigeminy), palpitations, or myocardial infarction may occur in higher risk patients or in patients receiving excessive phenylephrine dosage. Overdosage may cause pallor, weakness, respiratory difficulties like pulmonary edema, and cardiovascular collapse with hypotension. Intracranial bleeding has been reported with sympathomimetic therapy; cerebral bleeding or stroke is likely due to associated drug-induced hypertension and has been reported following phenylephrine overdosage.
Ocular effects can occur with sympathomimetic products. These can include increased intraocular pressure (ocular hypertension) and photophobia.
Sympathomimetic products also can produce GI and GU effects such as nausea/vomiting, anorexia, xerostomia (dry mouth) and dysuria. Ischemic colitis has been associated with the use of pseudoephedrine and may present with symptoms of abdominal pain and bloody diarrhea. Colitis may result from reversible splanchnic arterial vasoconstriction and may occur with acute or chronic use; the ischemic symptoms usually resolve upon discontinuation of pseudoephedrine. With recommended doses of guaifenesin, adverse GI effects are rare. When given in high or excessive guaifenesin dosage, nausea/vomiting, diarrhea, and/or abdominal pain may occur.
Several significant dermatological reactions have been reported infrequently with pseudoephedrine use. These reactions include: fixed drug eruption or exanthema, erythema, contact dermatitis, and other rash (unspecified). In general, the onset of the skin reactions occurs within 24 hours of administration and resolves in 2-3 days following drug discontinuation. Rash (unspecified) has also been reported with guaifenesin.
Central nervous system stimulants like phenylephrine have been abused, due to psychological dependence. At high doses, subjects commonly experience an elevation of mood, a sense of increased energy and alertness, and decreased appetite. Some individuals become anxious, irritable, and loquacious. In addition to the marked euphoria, the user experiences a sense of markedly enhanced physical strength and mental capacity. With continued use, tolerance develops, the user increases the dose, and toxic signs and symptoms appear. Depression may follow rapid withdrawal.
This monograph discusses the precautions and contraindications of a combination product. Clinicians may wish to consult the individual monographs for more information about the specific precautions of each agent.
Guaifenesin; phenylephrine products are contraindicated in individuals with known hypersensitivity to guaifenesin, phenylephrine or other sympathomimetic amines. This product is contraindicated in patients with idiosyncrasy to sympathomimetic amines which may be manifested by drug-induced insomnia, dizziness, weakness, tremor or arrhythmias. Patients known to be hypersensitive to other sympathomimetic amines may exhibit cross sensitivity with phenylephrine.
Guaifenesin may alter some laboratory tests. It may increase renal clearance for urate and lower serum uric acid levels. Guaifenesin may produce an increase in urinary 5-hydroxyindoleacetic acid and may therefore interfere with the interpretation of this diagnostic test for carcinoid syndrome. Guaifenesin may also falsely elevate the VMA test for catechols. Products containing guaifenesin should be discontinued at least 48 hours prior to the collection of urine specimens for such laboratory tests.
Phenylephrine is contraindicated for use in patients receiving MAOI therapy within two weeks of therapy (see Drug Interactions).
Phenylephrine is contraindicated in patients with severe or uncontrolled hypertension and ventricular tachycardia. Employ only with extreme caution in patients with thyroid disease (specifically hyperthyroidism, avoid in thyrotoxicosis), bradycardia, partial heart block (AV block, bundle-branch block), severe arteriosclerosis. Phenylephrine use is not recommended in the setting of acute cardiac arrhythmias (tachycardias) or severe coronary artery disease (including angina, acute myocardial infarction or history of myocardial infarction). Considerable caution should be used in patients with heart failure, cardiomyopathy or other cardiac disease. Guaifenesin should not be used for a cough that is specifically associated with heart failure or ACE inhibitor therapy.
There are no data on the use of this combination product in patients with renal impairment, renal failure or hepatic disease; use with caution.
Guaifenesin-containing products should not be used for persistent or chronic cough such as occurs with tobacco smoking, asthma, emphysema, or chronic bronchitis or any other condition where cough is associated with excessive secretions, unless under the supervision of a health care professional.
Patients should be instructed to check with their prescriber if cough persists after this medication has been used for 5-7 days or if high fever, skin rash, or continued headache, or sore throat is present with cough, as these may be indicative of a serious condition. Recommended dosages of these products should not be exceeded.
Phenylephrine is not recommended for use in patients with diabetes mellitus, closed-angle glaucoma, peripheral vascular disease, or urinary retention due to prostatic hypertrophy, because sympathomimetics can exacerbate these conditions.
Guaifenesin; phenylephrine products in general are not labeled for use in children and infants less than 6 years of age. The adverse effects of sympathomimetics such as phenylephrine can be severe, especially in neonates, infants, and toddlers; CNS stimulation, increased blood pressure, and tachycardia may occur. Due to the risk for serious adverse reactions, the FDA recommends against administration of over the counter (OTC) cough and cold products to infants and children younger than 2 years of age. When administering OTC medications to older pediatric patients, advise caregivers to read product labels carefully, use caution when administering multiple products to avoid duplication of ingredients, and use only measuring devices specifically designed for use with medications. Thoroughly assess each patient's use of similar products, both prescription and nonprescription, to avoid duplication of therapy and the potential for inadvertent overdose.
Both guaifenesin and phenylephrine are classified as FDA pregnancy risk category C drugs. Adequate or well-controlled pregnancy studies have not been done in humans. Some sympathomimetic amines are associated with minor malformations in some animal species; however, human teratogenesis has not been suspected based on limited epidemiologic evidence. Use of guaifenesin-phenylephrine during pregnancy should be avoided unless the potential benefits outweigh the unknown potential risks to the fetus. When administered to pregnant women, product formulations that contain ethanol or other drugs should not be used. Systemic phenylephrine must be used only when the benefit to the mother outweighs the risk to the fetus during late pregnancy, labor or obstetric delivery; when used during this time phenylephrine can cause fetal anoxia and/or bradycardia due to increased uterine contractility or decreased uterine blood flow.
It is not known whether guaifenesin is excreted into human breast milk. Small amounts of phenylephrine are excreted in human breast milk. Use of this drug combination, particularly extended-release products, is not recommended during breast-feeding because of the higher than usual risk for infants from exposure to sympathomimetic amines. Sympathomimetic adverse effects (irritability, excessive crying, and altered sleeping patterns) have been reported in a breast-fed infant following maternal administration of the sympathomimetic amine pseudoephedrine; symptoms resolved within 12 hours of drug discontinuation.
The older adult may be more sensitive to the sympathomimetic effects of phenylephrine. A lower initial phenylephrine dose may be advisable in geriatric patients. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities. According to the OBRA guidelines, cough, cold, and allergy medications should be used only for a limited duration (less than 14 days) unless there is documented evidence of enduring symptoms that cannot otherwise be alleviated and for which a cause cannot be identified and corrected. In addition, oral decongestants, such as phenylephrine, should be used cautiously in patients who have insomnia or hypertension. Oral decongestants may cause dizziness, nervousness, insomnia, palpitations, urinary retention, and elevated blood pressure.
For the temporary relief of cough and sinus and nasal congestion, including eustachian tube congestion, associated with the common cold, allergic rhinitis, or other upper respiratory conditions:
-immediate-release solid dosage formulations:
Oral dosage (immediate-release tablets with guaifenesin 385 mg, 388 mg, 395 mg, or 400 mg and phenylephrine 10 mg):
Adults: 1 tablet PO every 4 hours as needed. Do not exceed 6 tablets per 24 hours.
Children and Adolescents 12 years and older: 1 tablet PO every 4 hours as needed. Do not exceed 6 tablets per 24 hours.
Children 6 to 11 years: One-half tablet PO every 4 hours as needed. Do not exceed 3 tablets per 24 hours.
-oral liquid dosage formulations:
Oral dosage (oral solution with guaifenesin 100 mg and phenylephrine 2.5 mg per 5 mL; e.g., Mucinex Children's Stuffy Nose and Cold Solution):
Children 6 to 11 years: 10 mL PO every 4 hours as needed. Do not exceed 6 doses/24 hours.
Children 4 to 5 years: 5 mL PO every 4 hours as needed. Do not exceed 6 doses/24 hours.
Oral dosage (oral solution with guaifenesin 100 mg and phenylephrine 5 mg per 5 mL; e.g., Despec Liquid, Rescon GG Liquid):
Adults, Adolescents, and Children 12 years and older: 10 mL PO every 4 hours as needed. Do not exceed 6 doses/24 hours.
Children 6 to 11 years: 5 mL PO every 4 hours as needed. Do not exceed 6 doses/24 hours.
Children 2 to 5 years: 2.5 mL PO every 4 hours as needed. Do not exceed 6 doses/24 hours. Some products recommend consult with a prescriber prior to use in this age group.
Oral dosage (oral solutions with 100 mg guaifenesin and 10 mg phenylephrine per 5 mL; e.g., Entex LQ):
Adults, Adolescents, and Children 12 years and older: 5 mL PO every 4 hours as needed. Do not exceed 6 doses in 24 hours.
Children 6 to 11 years: 2.5 mL PO every 4 hours as needed. Do not exceed 6 doses in 24 hours.
Children 2 to 5 years: 1.25 mL PO every 4 hours as needed. Do not exceed 6 doses in 24 hours. Some products recommend consult with a prescriber prior to use in this age group.
Oral dosage (oral solution with guaifenesin 200 mg and phenylephrine 5 mg per 5 mL; e.g., Guiatex PE Syrup):
Adults, Adolescents, and Children 12 years and older: 10 mL PO every 4 to 6 hours as needed. Do not exceed 6 doses/24 hours.
Children 6 to 11 years: 5 mL PO every 4 to 6 hours as needed. Do not exceed 6 doses/24 hours.
Children 2 to 5 years: 2.5 mL PO every 4 to 6 hours as needed. Do not exceed 15 mL/24 hours.
Oral dosage (pediatric oral solution drops with guaifenesin 20 mg and phenylephrine 1.5 mg per 1 mL; e.g., Donatussin Drops):
Children 6 to 11 years: 2 mL PO every 4 to 6 hours as needed. Do not exceed 6 doses in 24 hours.
Children 2 to 5 years*: Dosage not labeled in approved package label. Consult a doctor prior to use. 1 mL PO every 4 to 6 hours as needed. Do not exceed 6 doses in 24 hours.
Oral dosage (oral solution with guaifenesin 50 mg and phenylephrine 2.5 mg per 5 mL; e.g., Triaminic Chest and Nasal Congestion):
Children 6 to 11 years: 10 mL PO every 4 hours as needed. Do not exceed 6 doses/24 hours.
Children 4 to 5 years: 5 mL PO every 4 hours as needed. Do not exceed 6 doses/24 hours.
-oral solid extended-release dosage formulations:
Oral dosage (biphasic extended-release tablets with guaifenesin 650 mg and phenylephrine 40 mg; e.g., Liquibid D 650/40):
Adults, Adolescents, and Children 12 years and older: 1 tablet PO every 12 hours as needed. Do not exceed 2 tablets per 24 hours.
Children 6 to 11 years: One-half tablet PO every 12 hours as needed. Do not exceed 1 tablet per 24 hours.
Oral dosage (biphasic or extended-release tablets with guaifenesin 1200 mg and phenylephrine 40 mg; e.g., Liquibid D 1200, DuoMax):
Adults, Adolescents, and Children 12 years and older: 1 tablet PO every 12 hours as needed. Do not exceed 2 tablets per 24 hours.
Children 6 to 11 years: One-half tablet PO every 12 hours as needed. Do not exceed 1 tablet per 24 hours.
Oral dosage (extended-release tablets containing guaifenesin 600 mg and phenylephrine 20 mg; e.g., MyDocs):
Adults, Adolescents, and Children 12 years and older: 1 or 2 tablets PO every 12 hours as needed. Do not exceed 4 tablets/24 hours.
Children 6 to 11 years: One-half to 1 tablet PO every 12 hours as needed. Do not exceed 2 tablets/24 hours.
Oral dosage (sustained-release tablets containing guaifenesin 835 mg and phenylephrine 25 mg; e.g., Aldex-G):
Adults and Adolescents: 1 tablet PO every 12 hours as needed. Do not exceed 2 tablets in 24 hours.
Children 6 to 12 years: One-half tablet PO every 12 hours as needed. Do not exceed 1 tablet in 24 hours.
Oral dosage (extended-release tablets containing guaifenesin 275 mg and phenylephrine 25 mg; e.g., Liquibid-PD):
Adults and Adolescents: 1 to 2 tablets PO every 12 hours as needed. Do not exceed 4 tablets/24 hours.
Children 6 to 12 years: 1 tablet PO every 12 hours as needed. Do not exceed 2 tablets/24 hours.
Maximum Dosage Limits:
NOTE: Do not exceed recommended dosage limits for the specific product prescribed; the following are general guidelines:
-Adults
2400 mg/day PO guaifenesin and 60 mg/day PO phenylephrine.
-Geriatric
2400 mg/day PO guaifenesin and 60 mg/day PO phenylephrine.
-Adolescents
2400 mg/day PO guaifenesin and 60 mg/day PO phenylephrine.
-Children
12 years: 2400 mg/day PO guaifenesin and 60 mg/day PO phenylephrine.
6 to 11 years: 1200 mg/day PO guaifenesin and 30 mg/day PO phenylephrine.
4 to 5 years: 600 mg/day PO guaifenesin and 15 mg/day PO phenylephrine.
2 to 3 years: 600 mg/day PO guaifenesin and 15 mg/day PO phenylephrine for prescription oral solutions/syrups. While some non-prescription products contain dosing for this age group, some products recommend that a doctor be consulted prior to use.
Less than 2 years: Safety and efficacy have not been established.
-Infants
Safety and efficacy have not been established.
-Neonates
Safety and efficacy have not been established.
Patients with Hepatic Impairment Dosing
Specific guidelines for dosage adjustments in hepatic impairment are not available.
Patients with Renal Impairment Dosing
Specific guidelines for dosage adjustments in renal impairment are not available.
Intermittent hemodialysis
In theory, phenylephrine is dialyzable but no objective data are available.
*non-FDA-approved indication
Acarbose: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acebutolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Acetaminophen; Aspirin, ASA; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Dextromethorphan; Guaifenesin; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Dextromethorphan; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Aclidinium; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Acrivastine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Albuterol: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Albuterol; Budesonide: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Alogliptin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alogliptin; Pioglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alpha-blockers: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Alpha-glucosidase Inhibitors: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alprazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Ambrisentan: (Major) Sympathomimetics can antagonize the effects of vasodilators when administered concomitantly. Patients should be monitored for reduced efficacy if taking ambrisentan with a sympathomimetic.
Amiloride: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Amiodarone: (Moderate) Use phenylephrine with caution in patients receiving amiodarone. Amiodarone possesses alpha-adrenergic blocking properties and can directly counteract the effects of phenylephrine. Phenylephrine also can block the effects of amiodarone. Monitor patients for decreased pressor effect and decreased amiodarone activity if these agents are administered concomitantly.
Amlodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Atorvastatin: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Benazepril: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Celecoxib: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Olmesartan: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Valsartan: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Amoxapine: (Major) Concomitant use of amoxapine with sympathomimetics should be avoided whenever possible; use with caution when concurrent use cannot be avoided. One drug information reference suggests that cyclic antidepressants potentiate the pharmacologic effects of direct-acting sympathomimetics, but decrease the pressor response to indirect-acting sympathomimetics, however, the data are not consistent.
Angiotensin II receptor antagonists: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Angiotensin-converting enzyme inhibitors: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Well-controlled hypertensive patients receiving phenylephrine at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Arformoterol: (Moderate) Caution and close observation should be used when arformoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Aspirin, ASA; Butalbital; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine; Orphenadrine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Atenolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Atenolol; Chlorthalidone: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Atomoxetine: (Moderate) Due to the potential for additive increases in blood pressure and heart rate, atomoxetine should be used cautiously with vasopressors such as phenylephrine. Consider monitoring the patient's blood pressure and heart rate at baseline and regularly if vasopressors are coadministered with atomoxetine.
Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by sympathomimetic agents, such as phenylephrine, and increases its pressor effect.
Atropine; Difenoxin: (Major) Atropine blocks the vagal reflex bradycardia caused by sympathomimetic agents, such as phenylephrine, and increases its pressor effect.
Avanafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Azelastine; Fluticasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Azilsartan; Chlorthalidone: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Beclomethasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Benzodiazepines: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Beta-blockers: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Betamethasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Betaxolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bethanechol: (Moderate) Bethanechol offsets the effects of sympathomimetics at sites where sympathomimetic and cholinergic receptors have opposite effects.
Bexagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Bisoprolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Bretylium: (Moderate) Monitor blood pressure and heart rate closely when sympathomimetics are administered with bretylium. The pressor and arrhythmogenic effects of catecholamines are enhanced by bretylium.
Brimonidine; Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Bromocriptine: (Moderate) The combination of bromocriptine with phenylephrine may cause headache, tachycardia, other cardiovascular abnormalities, seizures, and other serious effects. Concurrent use of bromocriptine and phenylephrine should be approached with caution. One case report documented worsening headache, hypertension, premature ventricular complexes, and ventricular tachycardia in a post-partum patient receiving bromocriptine for lactation suppression who was subsequently prescribed acetaminophen; dichloralphenazone; isometheptene for a headache. A second case involved a post-partum patient receiving bromocriptine who was later prescribed phenylpropanolamine; guaifenesin and subsequently developed hypertension, tachycardia, seizures, and cerebral vasospasm.
Brompheniramine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Brompheniramine; Pseudoephedrine; Dextromethorphan: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Budesonide: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Budesonide; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Bumetanide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Butalbital; Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Butalbital; Aspirin; Caffeine; Codeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Butorphanol: (Moderate) The rate of butorphanol absorption through the nasal mucosa is decreased when administered with sympathomimetic nasal decongestants such as phenylephrine. However, the extent of absorption is not decreased. A slower onset of action should be expected if butorphanol is administered concurrently with or immediately following a sympathomimetic nasal decongestant.
Caffeine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Caffeine; Sodium Benzoate: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Calcium-channel blockers: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Canagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Canagliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Cardiac glycosides: (Moderate) Carefully monitor patients receiving cardiac glycosides and vasopressors concurrently due to the increased risk of arrhythmia.
Carteolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Carvedilol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Cetirizine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlophedianol; Dexchlorpheniramine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlordiazepoxide: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlordiazepoxide; Amitriptyline: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlordiazepoxide; Clidinium: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Chlorothiazide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Chlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Ibuprofen; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorthalidone: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Ciclesonide: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Clevidipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Clonazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Clonidine: (Major) The cardiovascular effects of sympathomimetics, such as phenylephrine, may reduce the antihypertensive effects produced by clonidine. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Clorazepate: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Cocaine: (Major) Avoid concomitant use of additional vasoconstrictor agents with cocaine. If unavoidable, prolonged vital sign and ECG monitoring may be required. Myocardial ischemia, myocardial infarction, and ventricular arrhythmias have been reported after concomitant administration of topical intranasal cocaine and vasoconstrictor agents during nasal and sinus surgery. The risk for nervousness, irritability, convulsions, and other cardiac arrhythmias may increase during coadministration.
Codeine; Guaifenesin; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Corticosteroids: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Cortisone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Dapagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Saxagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Deflazacort: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Desloratadine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Desmopressin: (Moderate) Although the pressor activity of desmopressin is very low compared to its antidiuretic activity, large doses of desmopressin should be used with other pressor agents like phenylephrine only with careful patient monitoring.
Dexamethasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Dexbrompheniramine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dexchlorpheniramine; Dextromethorphan; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dextromethorphan; Guaifenesin; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Diazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Diethylpropion: (Major) Diethylpropion has vasopressor effects. Coadministration with other vasopressors may have the potential for serious cardiac adverse effects such as hypertensive crisis and cardiac arrhythmias.
Digoxin: (Moderate) Carefully monitor patients receiving cardiac glycosides and vasopressors concurrently due to the increased risk of arrhythmia.
Dihydroergotamine: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Diltiazem: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Dipeptidyl Peptidase-4 Inhibitors: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking dipeptidyl peptidase-4 (DPP-4) inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diphenoxylate; Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by sympathomimetic agents, such as phenylephrine, and increases its pressor effect.
Dopamine: (Moderate) Monitor blood pressure during concomitant use of dopamine and other vasopressors, such as phenylephrine, due to the risk for severe hypertension.
Dorzolamide; Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Doxazosin: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Dronabinol: (Moderate) Concurrent use of dronabinol, THC with sympathomimetics may result in additive hypertension, tachycardia, and possibly cardiotoxicity. Dronabinol, THC has been associated with occasional hypotension, hypertension, syncope, and tachycardia. In a study of 7 adult males, combinations of IV cocaine and smoked marijuana, 1 g marijuana cigarette, 0 to 2.7% delta-9-THC, increased the heart rate above levels seen with either agent alone, with increases plateauing at 50 bpm.
Dulaglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Epoprostenol: (Major) Avoid use of sympathomimetic agents with epoprostenol. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including epoprostenol. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Ergoloid Mesylates: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Ergot alkaloids: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Ergotamine: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Ergotamine; Caffeine: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants like phenylephrine; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Ertugliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Sitagliptin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Esmolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Estazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Ethacrynic Acid: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Exenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Felodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Fentanyl: (Major) Pain control may be impaired if fentanyl nasal spray is administered in patients receiving vasoconstrictive nasal decongestants (e.g., phenylephrine); do not titrate fentanyl nasal spray dose in such patients. This interaction is not expected with other fentanyl administration routes.
Fexofenadine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Finasteride; Tadalafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Fludrocortisone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Flunisolide: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Flurazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Fluticasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fluticasone; Salmeterol: (Moderate) Caution and close observation should also be used when salmeterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fluticasone; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Formoterol; Mometasone: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects. (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Furosemide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Ginger, Zingiber officinale: (Minor) In vitro studies have demonstrated the positive inotropic effects of certain gingerol constituents of ginger; but it is unclear if whole ginger root exhibits these effects clinically in humans. It is theoretically possible that excessive doses of ginger could affect the action of vasopressors like phenylephrine; however, no clinical data are available.
Glipizide; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glyburide; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glycopyrrolate; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Green Tea: (Moderate) Some, but not all, green tea products contain caffeine. Caffeine should be avoided or used cautiously with phenylephrine. CNS stimulants and sympathomimetics are associated with adverse effects such as nervousness, irritability, insomnia, and cardiac arrhythmias.
Guaifenesin; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Haloperidol: (Moderate) Non-cardiovascular drugs with alpha-blocking activity such as haloperidol, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Hydrocodone; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Hydrocortisone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Ibuprofen; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Iloprost: (Major) Avoid use of sympathomimetic agents with iloprost. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including iloprost. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Incretin Mimetics: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Indacaterol; Glycopyrrolate: (Moderate) Administer sympathomimetics with caution with beta-agonists such as indacaterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Indapamide: (Moderate) Sympathomimetics can antagonize the antihypertensive effects of vasodilators when administered concomitantly. Patients should be monitored to confirm that the desired antihypertensive effect is achieved.
Insulin Degludec; Liraglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Insulin Glargine; Lixisenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Insulins: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking insulin. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Iobenguane I 123: (Major) Discontinue medications that decrease norepinephrine uptake, such as phenylephrine, for at least 5 biological half-lives prior to iobenguane I 123 administration. Consider medication tapering or additional supportive therapy as appropriate to minimize the risk for precipitating phenylephrine withdrawal symptoms. Medications that decrease the uptake of norepinephrine can cause false negative imaging results. Increasing the dose of iobenguane I 123 will not overcome any potential uptake limiting effect of this medication.
Iobenguane I 131: (Major) Discontinue sympathomimetics for at least 5 half-lives before the administration of the dosimetry dose or a therapeutic dose of iobenguane I-131. Do not restart sympathomimetics until at least 7 days after each iobenguane I-131 dose. Drugs that reduce catecholamine uptake or deplete catecholamine stores, such as sympathomimetics, may interfere with iobenguane I-131 uptake into cells and interfere with dosimetry calculations resulting in altered iobenguane I-131 efficacy.
Ionic Contrast Media: (Major) The intravascular injection of a contrast medium should never be made after the administration of vasopressors since they strongly potentiate neurologic effects. Serious neurologic sequelae, including permanent paralysis, have been reported after cerebral arteriography, selective spinal arteriography, and arteriography of vessels supplying the spinal cord.
Ipratropium; Albuterol: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Isocarboxazid: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Isoflurane: (Major) Halogenated anesthetics may sensitize the myocardium to the effects of sympathomimetics, including phenylephrine, which can increase the risk of developing cardiac arrhythmias and hypotension.
Isradipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Ketamine: (Moderate) Closely monitor vital signs when ketamine and phenylephrine are coadministered; consider dose adjustment individualized to the patient's clinical situation. Phenylephrine may enhance the sympathomimetic effects of ketamine.
Labetalol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Levalbuterol: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Levamlodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Levobunolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Levothyroxine: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Levothyroxine; Liothyronine (Porcine): (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Levothyroxine; Liothyronine (Synthetic): (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Linagliptin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Linezolid: (Major) Linezolid may enhance the hypertensive effect of phenylephrine. Initial doses of phenylephrine, if given by intravenous infusion, should be reduced and subsequent dosing titrated to desired response. Closely monitor blood pressure during coadministration. Linezolid is an antibiotic that is also a weak, reversible nonselective inhibitor of monoamine oxidase (MAO). Therefore, linezolid has the potential for interaction with adrenergic agents, such as phenylephrine.
Liothyronine: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Liraglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Lixisenatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Loop diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Loratadine; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Lorazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Loxapine: (Moderate) Patients taking loxapine can have reduced pressor response to phenylephrine.
Macitentan: (Major) Avoid use of sympathomimetic agents with macitentan. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including macitentan. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Maprotiline: (Moderate) Use maprotiline and sympathomimetics together with caution and close clinical monitoring. Regularly assess blood pressure, heart rate, the efficacy of treatment, and the emergence of sympathomimetic/adrenergic adverse events. Carefully adjust dosages as clinically indicated. Maprotiline has pharmacologic activity similar to tricyclic antidepressant agents and may cause additive sympathomimetic effects when combined with agents with adrenergic/sympathomimetic activity.
Mecamylamine: (Major) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by mecamylamine. Close monitoring of blood pressure or the selection of alternative therapeutic agents may be needed.
Meglitinides: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metaproterenol: (Major) Caution and close observation should also be used when metaproterenol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Repaglinide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Saxagliptin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Sitagliptin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methyldopa: (Major) Sympathomimetics, such as phenylephrine, can antagonize the antihypertensive effects of methyldopa when administered concomitantly. Blood pressure should be monitored closely to confirm that the desired antihypertensive effect is achieved.
Methylergonovine: (Major) Avoid concomitant use of ergot alkaloids and vasopressors due to synergistic vasoconstriction and severe hypertension.
Methylphenidate Derivatives: (Moderate) Methylphenidate derivatives can potentiate the actions of both exogenous (such as dopamine and epinephrine) and endogenous (such as norepinephrine) vasopressors. It is advisable to monitor cardiac function if these medications are coadministered. Vasopressors include medications such as epinephrine, dopamine, midodrine, and non-prescription medications such as pseudoephedrine and phenylephrine.
Methylprednisolone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Metolazone: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Metoprolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Midazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Midodrine: (Major) Midodrine stimulates alpha-adrenergic receptors. Coadministration of midodrine with other vasoconstrictive agents, such as phenylephrine, may enhance or potentiate the effects of midodrine.
Miglitol: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Mometasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Monoamine oxidase inhibitors: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Nabilone: (Moderate) Concurrent use of nabilone with sympathomimetics (e.g., amphetamine or cocaine) may result in additive hypertension, tachycardia, and possibly cardiotoxicity. In a study of 7 adult males, combinations of cocaine (IV) and smoked marijuana (1 g marijuana cigarette, 0 to 2.7% delta-9-THC) increased the heart rate above levels seen with either agent alone, with increases reaching a plateau at 50 bpm.
Nadolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nafarelin: (Moderate) If use of a topical nasal decongestants (e.g., oxymetazoline, tetrahydrozoline, phenylephrine nasal) is necessary during therapy with intranasal nafarelin, the decongestant should not be used for at least 2 hours after nafarelin is administered.
Naproxen; Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Nebivolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nebivolol; Valsartan: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Nicardipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Nicotine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e., nicotine nasal spray); however, no dosage adjustments are recommended.
NIFEdipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Nimodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Nisoldipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Nitrates: (Moderate) Sympathomimetics can antagonize the antianginal effects of nitrates, and can increase blood pressure and/or heart rate. Anginal pain may be induced when coronary insufficiency is present.
Non-Ionic Contrast Media: (Major) Do not administer non-ionic contrast media intra-arterially after the administration of vasopressors since they strongly potentiate neurologic effects.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Olopatadine; Mometasone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Oxazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Oxytocin: (Major) The administration of prophylactic vasopressors with oxytocin can cause severe, persistent hypertension, as the 2 drugs may have a synergistic and additive vasoconstrictive effect. This interaction was noted when oxytocin was given 3 to 4 hours after prophylactic vasoconstrictor in conjunction with caudal anesthesia. The incidence of such an interaction may be decreased if vasopressors are not administered prior to oxytocin.
Ozanimod: (Major) Coadministration of ozanimod with sympathomimetics such as phenylephrine is not routinely recommended due to the potential for hypertensive crisis. If coadministration is medically necessary, closely monitor the patient for hypertension. An active metabolite of ozanimod inhibits MAO-B, which may increase the potential for hypertensive crisis. Sympathomimetics may increase blood pressure by increasing norepinephrine concentrations and monoamine oxidase inhibitors (MAOIs) are known to potentiate these effects. Concomitant use of ozanimod with pseudoephedrine did not potentiate the effects on blood pressure. However, hypertensive crisis has occurred with administration of ozanimod alone and also during coadministration of sympathomimetic medications and other selective or nonselective MAO inhibitors.
Perindopril; Amlodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Phendimetrazine: (Major) Phendimetrazine is a phenylalkaline sympathomimetic agent. All sympathomimetics and psychostimulants, including other anorexiants, should be used cautiously or avoided in patients receiving phendimetrazine. The combined use of these agents may have the potential for additive side effects, such as hypertensive crisis or cardiac arrhythmia.
Phenelzine: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Atropine blocks the vagal reflex bradycardia caused by sympathomimetic agents, such as phenylephrine, and increases its pressor effect.
Phenothiazines: (Moderate) Other non-cardiovascular drugs with alpha-blocking activity such as phenothiazines, directly counteract the effects of phenylephrine and can counter the desired pharmacologic effect. They also can be used to treat excessive phenylephrine-induced hypertension.
Phenoxybenzamine: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Phentermine: (Major) Because phentermine is a sympathomimetic and anorexic agent (i.e., psychostimulant) it should not be used in combination with other sympathomimetics. The combined use of these agents may have the potential for additive side effects, such as hypertensive crisis or cardiac arrhythmias.
Phentermine; Topiramate: (Major) Because phentermine is a sympathomimetic and anorexic agent (i.e., psychostimulant) it should not be used in combination with other sympathomimetics. The combined use of these agents may have the potential for additive side effects, such as hypertensive crisis or cardiac arrhythmias.
Phentolamine: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Phosphodiesterase inhibitors: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Pindolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Pioglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Glimepiride: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes. (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Potassium-sparing diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Pramlintide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Prazosin: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Prednisolone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Prednisone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Procarbazine: (Major) Because procarbazine exhibits some monoamine oxidase inhibitory (MAOI) activity, sympathomimetic drugs should be avoided. As with MAOIs, the use of a sympathomimetic drug with procarbazine may precipitate hypertensive crisis or other serious side effects. In the presence of MAOIs, drugs that cause release of norepinephrine induce severe cardiovascular and cerebrovascular responses. In general, do not use a sympathomimetic drug unless clinically necessary (e.g., medical emergencies, agents like dopamine) within the 14 days prior, during or 14 days after procarbazine therapy. If use is necessary within 2 weeks of the MAOI drug, in general the initial dose of the sympathomimetic agent must be greatly reduced. Patients should be counseled to avoid non-prescription (OTC) decongestants and other drug products, weight loss products, and energy supplements that contain sympathomimetic agents.
Propofol: (Moderate) Initially, vasopressors may reduce propofol serum concentrations due to increased metabolic clearance secondary to increased hepatic blood flow. An increase in the propofol dose may be required. Additionally, the vasopressor dose may need to be increased over time due to tachyphylaxis. Thus, these drugs may drive each other in a progressively myocardial depressive loop, which could lead to cardiac arrhythmias or cardiac failure.
Propranolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Pseudoephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Pseudoephedrine; Triprolidine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Quazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Racepinephrine: (Major) Racepinephrine is a sympathomimetic drug with agonist actions at both the alpha and beta receptors. Patients using racepinephrine inhalation are advised to avoid other non-prescription products containing sympathomimetics since additive adverse effects on the cardiovascular and nervous system are possible, some which may be undesirable. Side effects such as nausea, tremor, nervousness, difficulty with sleep, and increased heart rate or blood pressure may be additive. Patients should avoid use of non-prescription decongestants, such as phenylephrine and pseudoephedrine, while using racepinephrine inhalations. Patients should avoid dietary supplements containing ingredients that are reported or claimed to have a stimulant or weight-loss effect, such as ephedrine and ephedra, Ma huang, and phenylpropanolamine.
Rasagiline: (Moderate) The concomitant use of rasagiline and sympathomimetics was not allowed in clinical studies; therefore, caution is advised during concurrent use of rasagiline and sympathomimetics including stimulants for ADHD and weight loss, non-prescription nasal, oral, and ophthalmic decongestants, and weight loss dietary supplements containing Ephedra. Although sympathomimetics are contraindicated for use with other non-selective monoamine oxidase inhibitors (MAOIs), hypertensive reactions generally are not expected to occur during concurrent use with rasagiline because of the selective monoamine oxidase-B (MAO-B) inhibition of rasagiline at manufacturer recommended doses. One case of elevated blood pressure has been reported in a patient during concurrent use of the recommended dose of rasagiline and ophthalmic tetrahydrozoline. One case of hypertensive crisis has been reported in a patient taking the recommended dose of another MAO-B inhibitor, selegiline, in combination with ephedrine. It should be noted that the MAO-B selectivity of rasagiline decreases in a dose-related manner as increases are made above the recommended daily dose and interactions with sympathomimetics may be more likely to occur at these higher doses.
Remimazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Riociguat: (Major) Avoid use of sympathomimetic agents with riociguat. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including riociguat. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Rosiglitazone: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Safinamide: (Moderate) Severe hypertensive reactions, including hypertensive crisis, have been reported in patients taking monoamine oxidase inhibitors (MAOIs), such as safinamide, and sympathomimetic medications, such as phenylephrine. If concomitant use of safinamide and phenylephrine is necessary, monitor for hypertension and hypertensive crisis.
Salmeterol: (Moderate) Caution and close observation should also be used when salmeterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Selegiline: (Contraindicated) The product label for phenylephrine contraindicates use with monoamine oxidase inhibitors (MAOIs) due to the risk of hypertensive crisis. Selegiline is a selective monoamine oxidase inhibitor type B; however, the selectivity of the drug decreases with increasing doses. The manufacturers of selegiline products recommend caution and monitoring of blood pressure during concurrent use with sympathomimetics. Phenylephrine should generally not be used concurrently with MAOIs or within 14 days before or after their use.
Selexipag: (Major) Avoid use of sympathomimetic agents with selexipag. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including selexipag. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Semaglutide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sevoflurane: (Major) Halogenated anesthetics may sensitize the myocardium to the effects of sympathomimetics, including phenylephrine, which can increase the risk of developing cardiac arrhythmias and hypotension.
SGLT2 Inhibitors: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sildenafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Solriamfetol: (Moderate) Monitor blood pressure and heart rate during coadministration of solriamfetol, a norepinephrine and dopamine reuptake inhibitor, and vasopressors. Concurrent use of solriamfetol and other medications that increase blood pressure and/or heart rate may increase the risk of such effects. Coadministration of solriamfetol with other drugs that increase blood pressure or heart rate has not been evaluated.
Sotagliflozin: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking SGLT2 inhibitors. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sotalol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Spironolactone: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
St. John's Wort, Hypericum perforatum: (Major) St. John's wort may have MAOI-like activities, and could potentially increase the cardiac stimulation and vasopressor effects of the sympathomimetics. St. John's wort should be used cautiously with any sympathomimetic agent.
Sulfonylureas: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking sulfonylureas. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Tadalafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Telmisartan; Amlodipine: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Temazepam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Terazosin: (Major) Sympathomimetics can antagonize the effects of antihypertensives such as alpha-blockers when administered concomitantly.
Terbutaline: (Major) Concomitant use of sympathomimetics with beta-agonists might result in additive cardiovascular effects such as increased blood pressure and heart rate.
Theophylline, Aminophylline: (Moderate) Concurrent administration of theophylline or aminophylline with some sympathomimetics can produce excessive stimulation and effects such as nervousness, irritability, or insomnia. Seizures or cardiac arrhythmias are also possible. (Moderate) Concurrent administration of theophylline or aminophylline with sympathomimetics can produce excessive stimulation manifested by skeletal muscle activity, agitation, and hyperactivity.
Thiazide diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Thiazolidinediones: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking thiazolidinediones. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Thiothixene: (Moderate) The alpha-adrenergic effects of epinephrine can be blocked during concurrent administration of thiothixene. This blockade can cause an apparently paradoxical condition called epinephrine reversal, which can lead to severe hypotension, tachycardia, and, potentially, myocardial infarction. Patients taking thiothixene can have reduced pressor response to phenylephrine.
Thyroid hormones: (Moderate) Monitor hemodynamic parameters during concomitant sympathomimetic agent and thyroid hormone use; dosage adjustments may be necessary. Concomitant use may increase the effects of sympathomimetics or thyroid hormone.
Timolol: (Moderate) Monitor hemodynamic parameters and for loss of efficacy during concomitant sympathomimetic agent and beta-blocker use; dosage adjustments may be necessary. Concomitant use may antagonize the cardiovascular effects of either drug.
Tirzepatide: (Moderate) Sympathomimetic agents tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when sympathomimetics are administered to patients taking incretin mimetics. Sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Torsemide: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Trandolapril; Verapamil: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Tranylcypromine: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Treprostinil: (Major) Avoid use of sympathomimetic agents with treprostinil. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including treprostinil. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Triamcinolone: (Moderate) The therapeutic effect of phenylephrine may be increased in patient receiving corticosteroids, such as hydrocortisone. Monitor patients for increased pressor effect if these agents are administered concomitantly.
Triamterene: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Triazolam: (Moderate) The therapeutic effect of phenylephrine may be decreased in patients receiving benzodiazepines. Monitor patients for decreased pressor effect if these agents are administered concomitantly.
Tricyclic antidepressants: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents such as norepinephrine and, to a lesser extent, epinephrine and phenylephrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat.
Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear at high risk for significant elevations in blood pressure, however, increased blood pressure has been reported in some patients.
Vardenafil: (Minor) The therapeutic effect of phenylephrine injection may be decreased in patients receiving phosphodiesterase inhibitors. A decreased pressor effect of phenylephrine might occur. Monitor for proper blood pressure when these drugs are used together.
Vasodilators: (Moderate) Use sympathomimetic agents with caution in patients receiving therapy for hypertension. Patients should be monitored to confirm that the desired antihypertensive effect is achieved. Sympathomimetics can increase blood pressure and heart rate, and antagonize the antihypertensive effects of vasodilators when administered concomitantly. Anginal pain may be induced when coronary insufficiency is present.
Verapamil: (Moderate) Phenylephrine's cardiovascular effects may reduce the antihypertensive effects of calcium-channel blockers. Well-controlled hypertensive patients receiving decongestant sympathomimetics at recommended doses do not appear to be at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Zavegepant: (Moderate) Administer intranasal decongestants at least 1 hour after zavegepant administration. Simultaneous coadministration may decrease zavegepant absorption which may reduce its efficacy.
Guaifenesin-phenylephrine products have combined expectorant and sympathomimetic properties that help relieve symptoms related to congestion.
-Guaifenesin: Guaifenesin reduces the adhesiveness and surface tension of respiratory tract secretions, thereby easing their expectoration. The expectorant effect can reduce cough frequency. The increased flow of less viscous secretions promotes ciliary action and changes a dry, nonproductive cough to one that is more productive and less frequent. Guaifenesin loosens and thins phlegm and bronchial secretions to ease expectoration. By reducing the viscosity and adhesiveness of secretions, guaifenesin increases the efficacy of the mucociliary mechanism in removing accumulated secretions from the upper and lower airway. Guaifenesin can also be beneficial for irritating, nonproductive coughs and for conditions in which thick mucous secretions are produced.
-Phenylephrine: Phenylephrine possesses both direct and indirect sympathomimetic effects, primarily as a postsynaptic alpha-adrenergic agonist, producing potent vasoconstriction. An indirect effect due to the release of norepinephrine plays a small role in the overall action of phenylephrine. Phenylephrine does not stimulate beta2-adrenergic receptors in the bronchi or peripheral blood vessels or beta1-adrenergic receptors of the heart. Phenylephrine increases resistance and, to a lesser extent, decreases capacitance of blood vessels. Following oral administration, constriction of blood vessels leads to reduced blood flow to the nose, decreased amount of blood in the sinusoid vessels, and decreased mucosal edema, which relieves nasal congestion.
Guaifenesin; phenylephrine combination products are administered orally. Various dosage forms are available which are formulated to provide therapeutic effects over the 12 hour dosing interval. Coadministration of guaifenesin with phenylephrine has no effect on the bioavailability or pharmacokinetics of either drug.
-Guaifenesin: Guaifenesin has a plasma half-life of approximately 1 hour. It is rapidly hydrolyzed (60% within seven hours) and then excreted in the urine, with beta-(2-methoxyphenoxy)-lactic acid as its major urinary metabolite. No unchanged drug could be detected in the urine following administration of oral guaifenesin. Excessive use of guaifenesin may result in urolithiasis; renal stones have been documented to contain beta-(2-methoxyphenoxy)-lactic acid and other guaifenesin metabolites.
-Phenylephrine: Phenylephrine is metabolized in the liver and intestine by monoamine oxidase. The metabolites and their route and rate of excretion have not been fully identified. The pharmacologic effect of phenylephrine is terminated at least in part by uptake of the drug into tissues.
-Route-Specific Pharmacokinetics
Oral Route
-Guaifenesin: Following oral administration, guaifenesin is rapidly absorbed from the gastrointestinal tract.
-Phenylephrine: Phenylephrine is irregularly absorbed from and readily metabolized in the GI tract. The bioavailability of phenylephrine is about 38%. Following oral administration, nasal decongestion occurs within 15-20 minutes and persists for up to 4 hours.