Exit

Health Condition

Type 1 Diabetes

About This Condition

Diabetes mellitus is the reduced ability, or inability, to metabolize carbohydrates resulting from inadequate insulin production or utilization. Several types of diabetes exist: type 1, type 2, and gestational. This article concerns type 1 diabetes, in which autoimmune destruction of the beta cells of the pancreas results in insulin deficiency.

People with all forms of diabetes face increased risks of an array of complications due to chronically elevated blood glucose levels (hyperglycemia). Long-term hyperglycemia related to type 1 diabetes increases the risk of cardiovascular disease, stroke, kidney and nerve damage, Alzheimer's disease, poor wound healing, infections, and eye problems including retinopathy and cataracts.1,2,3

People with type 1 diabetes need insulin replacement and should work with the doctor prescribing their insulin before using any of the lifestyle or dietary changes mentioned in this article. Any change that makes the body more responsive to insulin could require adjustments in insulin dosage that the treating physician must supervise.4

References

1. Barrett EJ, Liu Z, Khamaisi M, et al. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017;102:4343–410.

2. Kahanovitz L, Sluss PM, Russell SJ. Type 1 Diabetes - A Clinical Perspective. Point Care 2017;16:37–40.

3. Lee HJ, Seo HI, Cha HY, et al. Diabetes and Alzheimer's Disease: Mechanisms and Nutritional Aspects. Clin Nutr Res 2018;74:229–40.

4. Piłaciński S, Zozulińska-Ziółkiewicz DA. Influence of lifestyle on the course of type 1 diabetes mellitus. Arch Med Sci 2014;10:124–34.

5. Agathos E, Tentolouris A, Eleftheriadou I, et al. Effect of alpha-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J Int Med Res 2018;46:1779–90.

6. Ametov A, Barinov A, Dyck P, et al. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: the SYDNEY trial. Diabetes Care 2003;26:770–6.

7. Han Y, Wang M, Shen J, et al. Differential efficacy of methylcobalamin and alpha-lipoic acid treatment on symptoms of diabetic peripheral neuropathy. Minerva Endocrinol 2018;43:11–8.

8. Ziegler D, Ametov A, Barinov A, et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 2006;29:2365–70.

9. Nebbioso M, Federici M, Rusciano D, et al. Oxidative stress in preretinopathic diabetes subjects and antioxidants. Diabetes Technol Ther 2012;14:257–63.

10. Gebka A, Serkies-Minuth E, Raczynska D. Effect of the administration of alpha-lipoic acid on contrast sensitivity in patients with type 1 and type 2 diabetes. Mediators Inflamm 2014;2014:131538.

11. Angelousi A, Larger E. Anaemia, a common but often unrecognized risk in diabetic patients: a review. Diabetes Metab 2015;41:18–27.

12. Li S, Chen X, Li Q, et al. Effects of acetyl-L-carnitine and methylcobalamin for diabetic peripheral neuropathy: A multicenter, randomized, double-blind, controlled trial. J Diabetes Investig 2016;7:777–85.

13. Trippe B, Barrentine L, Curole M, Tipa E. Nutritional management of patients with diabetic peripheral neuropathy with L-methylfolate-methylcobalamin-pyridoxal-5-phosphate: results of a real-world patient experience trial. Curr Med Res Opin 2016;32:219–27.

14. Talaei A, Siavash M, Majidi H, Chehrei A. Vitamin B12 may be more effective than nortriptyline in improving painful diabetic neuropathy. Int J Food Sci Nutr 2009;60:71–6.

15. Xu Q, Pan J, Yu J, et al. Meta-analysis of methylcobalamin alone and in combination with lipoic acid in patients with diabetic peripheral neuropathy. Diabetes Res Clin Pract 2013;101:99–105.

16. Jiang D, Zhao S, Li M, et al. Prostaglandin E1 plus methylcobalamin combination therapy versus prostaglandin E1 monotherapy for patients with diabetic peripheral neuropathy: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2018;97:e13020.

17. Masse P, Boudreau J, Tranchant C, et al. Type 1 diabetes impairs vitamin B(6) metabolism at an early stage of women's adulthood. Appl Physiol Nutr Metab 2012;37:167–75.

18. Elbarbary N, Ismail E, Zaki M, et al. Vitamin B complex supplementation as a homocysteine-lowering therapy for early stage diabetic nephropathy in pediatric patients with type 1 diabetes: A randomized controlled trial. Clin Nutr 2019.

19. Williams M, Bolton W, Khalifah R, et al. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol 2007;27:605–14.

20. MacKenzie K, Wiltshire E, Gent R, et al. Folate and vitamin B6 rapidly normalize endothelial dysfunction in children with type 1 diabetes mellitus. Pediatrics 2006;118:242–53.

21. Engelen L, Stehouwer C, Schalkwijk C. Current therapeutic interventions in the glycation pathway: evidence from clinical studies. Diabetes Obes Metab 2013;15:677–89.

22. Rak K, Bronkowska M. Immunomodulatory Effect of Vitamin D and Its Potential Role in the Prevention and Treatment of Type 1 Diabetes Mellitus-A Narrative Review. Molecules 2018;24.

23. Maddaloni E, Cavallari I, Napoli N, Conte C. Vitamin D and Diabetes Mellitus. Front Horm Res 2018;50:161–76.

24. Grammatiki M, Karras S, Kotsa K. The role of vitamin D in the pathogenesis and treatment of diabetes mellitus: a narrative review. Hormones (Athens) 2019;18:37–48.

25. Cadario F, Savastio S, Ricotti R, et al. Administration of vitamin D and high dose of omega 3 to sustain remission of type 1 diabetes. Eur Rev Med Pharmacol Sci 2018;22:512–5.

26. Cadario F, Savastio S, Rizzo A, et al. Can Type 1 diabetes progression be halted? Possible role of high dose vitamin D and omega 3 fatty acids. Eur Rev Med Pharmacol Sci 2017;21:1604–9.

27. Gregoriou E, Mamais I, Tzanetakou I, et al. The Effects of Vitamin D Supplementation in Newly Diagnosed Type 1 Diabetes Patients: Systematic Review of Randomized Controlled Trials. Rev Diabet Stud 2017;14:260–8.

28. Felicio K, de Souza A, Neto J, et al. Glycemic Variability and Insulin Needs in Patients with Type 1 Diabetes Mellitus Supplemented with Vitamin D: A Pilot Study Using Continuous Glucose Monitoring System. Curr Diabetes Rev 2018;14:395–403.

29. Bogdanou D, Penna-Martinez M, Filmann N, et al. T-lymphocyte and glycemic status after vitamin D treatment in type 1 diabetes: A randomized controlled trial with sequential crossover. Diabetes Metab Res Rev 2017;33.

30. Wierzbicka E, Szalecki M, Pludowski P, et al. Vitamin D status, body composition and glycemic control in Polish adolescents with type 1 diabetes. Minerva Endocrinol 2016;41:445–55.

31. Savastio S, Cadario F, Genoni G, et al. Vitamin D Deficiency and Glycemic Status in Children and Adolescents with Type 1 Diabetes Mellitus. PLoS One 2016;11:e0162554.

32. Hafez M, Hassan M, Musa N, et al. Vitamin D status in Egyptian children with type 1 diabetes and the role of vitamin D replacement in glycemic control. J Pediatr Endocrinol Metab 2017;30:389–94.

33. Aljabri K, Bokhari S, Khan M. Glycemic changes after vitamin D supplementation in patients with type 1 diabetes mellitus and vitamin D deficiency. Ann Saudi Med 2010;30:454–8.

34. Petlevski R, Hadzija M, Slijepcevic M, Juretic D. Effect of 'antidiabetis' herbal preparation on serum glucose and fructosamine in NOD mice. J Ethnopharmacol 2001;75:181–4.

35. Stefanescu Braic R, Vari C, Imre S, et al. Vaccinium Extracts as Modulators in Experimental Type 1 Diabetes. J Med Food 2018;21:1106–12.

36. Kim J, Kim C, Lee Y, et al. Vaccinium myrtillus extract prevents or delays the onset of diabetes-induced blood-retinal barrier breakdown. Int J Food Sci Nutr 2015;66:236–42.

37. Putta S, Yarla N, Kumar K, et al. Preventive and Therapeutic Potentials of Anthocyanins in Diabetes and Associated Complications. Curr Med Chem 2018;25:5347–71.

38. Nabavi S, Habtemariam S, Daglia M, et al. Anthocyanins as a potential therapy for diabetic retinopathy. Curr Med Chem 2015;22:51–8.

39. Scharrer A, Ober M. Anthocyanosides in the treatment of retinopathies. Klin Monatsblatt Augenheilk 1981;178:386–9.

40. McCarty M. In type 1 diabetics, high-dose biotin may compensate for low hepatic insulin exposure, promoting a more normal expression of glycolytic and gluconeogenic enyzymes and thereby aiding glycemic control. Med Hypotheses 2016;95:45–8.

41. Coggeshall J, Heggers J, Robson M, Baker H. Biotin Status and Plasma Glucose in Diabetics. Ann NY Acad Sci 1985;447:389–92.

42. Hemmati M, Babaei H, Abdolsalehei M. Survey of the effect of biotin on glycemic control and plasma lipid concentrations in type 1 diabetic patients in kermanshah in iran (2008-2009). Oman Med J 2013;28:195–8.

43. Koutsikos D, Agroyannis B, Tzanatos-Exarchou H. Biotin for diabetic peripheral neuropathy. Biomed Pharmacother 1990;44:511–4.

44. Lin C, Huang Y. Chromium, zinc and magnesium status in type 1 diabetes. Curr Opin Clin Nutr Metab Care 2015;18:588–92.

45. Peruzzu A, Solinas G, Asara Y, et al. Association of trace elements with lipid profiles and glycaemic control in patients with type 1 diabetes mellitus in northern Sardinia, Italy: An observational study. Chemosphere 2015;132:101–7.

46. Gluschenko N, Vasylyshyn K, Roschupkin A, et al. The content of microelements in blood serum and erythrocytes in children with diabetes mellitus type 1 depending on level of glycemic control. Georgian Med News 2016:66–71.

47. Littlefield D. Chromium decreases blood glucose in a patient with diabetes. J Am Diet Assoc 1994;94:1368.

48. Fox G, Sabovic Z. Chromium picolinate supplementation for diabetes mellitus. J Fam Pract 1998;46:83–6.

49. Ganguly R, Sahu S, Ohanyan V, et al. Oral chromium picolinate impedes hyperglycemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoE(-/-) mice. Sci Rep 2017;7:45279.

50. Dzugkoev S, Zangieva O, Dzugkoeva F. [Influence of combined treatment on biochemical and functional characteristics in patients with vascular complications of type 1 diabetes mellitus and different pathways of compensation]. Klin Med (Mosk) 2013;91:14–8.

51. Dzugkoev S, Kaloeva M, Dzugkoeva F. Effect of combination therapy with coenzyme Q10 on functional and metabolic parameters in patients with type 1 diabetes mellitus. Bull Exp Biol Med 2012;152:364–6.

52. Henriksen J, Andersen C, Hother-Nielsen O, et al. Impact of ubiquinone (coenzyme Q10) treatment on glycaemic control, insulin requirement and well-being in patients with Type 1 diabetes mellitus. Diabet Med 1999;16:312–8.

53. Mantle D, Hargreaves I. Coenzyme Q10 and Degenerative Disorders Affecting Longevity: An Overview. Antioxidants (Basel) 2019;8.

54. Hannan J, Ali L, Rokeya B, et al. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption and enhancing insulin action. Br J Nutr 2007;97:514–21.

55. Liu L, Du X, Zhang Z, Zhou J. Trigonelline inhibits caspase 3 to protect beta cells apoptosis in streptozotocin-induced type 1 diabetic mice. Eur J Pharmacol 2018;836:115–21.

56. Haeri M, Limaki H, White C, White K. Non-insulin dependent anti-diabetic activity of (2S, 3R, 4S) 4-hydroxyisoleucine of fenugreek (Trigonella foenum graecum) in streptozotocin-induced type I diabetic rats. Phytomedicine 2012;19:571–4.

57. Raju J, Gupta D, Rao A, et al. Trigonellafoenum graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol Cell Biochem 2001;224:45–51.

58. Sharma R, Raghuram T, Rao N. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur J Clin Nutr 1990;44:301–6.

59. Basu A, Alman A, Snell-Bergeon J. Dietary fiber intake and glycemic control: coronary artery calcification in type 1 diabetes (CACTI) study. Nutr J 2019;18:23.

60. Nader N, Weaver A, Eckert S, Lteif A. Effects of fiber supplementation on glycemic excursions and incidence of hypoglycemia in children with type 1 diabetes. Int J Pediatr Endocrinol 2014;2014:13.

61. Vuorinen-Markkola H, Sinisalo M, Koivisto VA. Guar gum in insulin-dependent diabetes: effects on glycemic control and serum lipoproteins. Am J Clin Nutr 1992;56:1056–60.

62. Niinisto S, Takkinen H, Erlund I, et al. Fatty acid status in infancy is associated with the risk of type 1 diabetes-associated autoimmunity. Diabetologia 2017;60:1223–33.

63. Norris J, Kroehl M, Fingerlin T, et al. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: The Diabetes Autoimmunity Study in the Young. Diabetologia 2014;57:295–304.

64. Miller M, Yin X, Seifert J, et al. Erythrocyte membrane omega-3 fatty acid levels and omega-3 fatty acid intake are not associated with conversion to type 1 diabetes in children with islet autoimmunity: the Diabetes Autoimmunity Study in the Young (DAISY). Pediatr Diabetes 2011;12:669–75.

65. Lamichhane A, Crandell J, Jaacks L, et al. Longitudinal associations of nutritional factors with glycated hemoglobin in youth with type 1 diabetes: the SEARCH Nutrition Ancillary Study. Am J Clin Nutr 2015;101:1278–85.

66. Mayer-Davis E, Dabelea D, Crandell J, et al. Nutritional factors and preservation of C-peptide in youth with recently diagnosed type 1 diabetes: SEARCH Nutrition Ancillary Study. Diabetes Care 2013;36:1842–50.

67. Stiefel P, Ruiz-Gutierrez V, Gajon E, et al. Sodium transport kinetics, cell membrane lipid composition, neural conduction and metabolic control in type 1 diabetic patients. Changes after a low-dose n-3 fatty acid dietary intervention. Ann Nutr Metab 1999;43:113–20.

68. Lee C, Sharp S, Wexler D, Adler A. Dietary intake of eicosapentaenoic and docosahexaenoic acid and diabetic nephropathy: cohort analysis of the diabetes control and complications trial. Diabetes Care 2010;33:1454–6.

69. Lewis E, Perkins B, Lovblom L, et al. Effect of omega-3 supplementation on neuropathy in type 1 diabetes: A 12-month pilot trial. Neurology 2017;88:2294–301.

70. Gutstein A, Copple T. Cardiovascular disease and omega-3s: Prescription products and fish oil dietary supplements are not the same. J Am Assoc Nurse Pract 2017;29:791–801.

71. Tiwari P, Ahmad K, Baig M. Gymnema sylvestre for Diabetes: From Traditional Herb to Future's Therapeutic. Curr Pharm Des 2017;23:1667–76.

72. Shenoy R, Prashanth K, Manonmani H. In Vitro Antidiabetic Effects of Isolated Triterpene Glycoside Fraction from Gymnema sylvestre.Evid Based Complement Alternat Med 2018;2018:7154702.

73. Shanmugasundaram E, Rajeswari G, Baskaran K, et al. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. J Ethnopharmacol 1990;30:281–94.

74. Sima A. Acetyl-L-carnitine in diabetic polyneuropathy: experimental and clinical data. CNS Drugs 2007;21:13–23.

75. Evans J, Jacobs T, Evans E. Role of acetyl-L-carnitine in the treatment of diabetic peripheral neuropathy. Ann Pharmacother 2008;42:1686–91.

76. Li S, Chen X, Li Q, et al. Effects of acetyl-L-carnitine and methylcobalamin for diabetic peripheral neuropathy: A multicenter, randomized, double-blind, controlled trial. J Diabetes Investig 2016;7:777–85.

77. Dragan S, Andrica F, Serban M, Timar R. Polyphenols-rich natural products for treatment of diabetes. Curr Med Chem 2015;22:14–22.

78. Lehtonen H, Jarvinen R, Linderborg K, et al. Postprandial hyperglycemia and insulin response are affected by sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berry and its ethanol-soluble metabolites. Eur J Clin Nutr 2010;64:1465–71.

79. Dunca I, et al. Effect of a dietary supplement containing blueberry and sea buckthorn concentrate on antioxidant capacity in type 1 diabetic children. Acta Physiol Hung 2008;95:383–93.

80. Bahmani F, Kia M, Soleimani A, et al. Effect of Selenium Supplementation on Glycemic Control and Lipid Profiles in Patients with Diabetic Nephropathy. Biol Trace Elem Res 2016;172:282–9.

81. Crary E, McCarty M. Potential clinical applications for high-dose nutritional antioxidants. Med Hypotheses 1984;13:77–98.

82. Kahler W, Kuklinski B, Ruhlmann C, Plotz C. [Diabetes mellitus--a free radical-associated disease. Results of adjuvant antioxidant supplementation]. Z Gesamte Inn Med 1993;48:223–32.

83. Sirdah M. Protective and therapeutic effectiveness of taurine in diabetes mellitus: a rationale for antioxidant supplementation. Diabetes Metab Syndr 2015;9:55–64.

84. Moloney M, Casey R, O'Donnell D, et al. Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics. Diab Vasc Dis Res 2010;7:300–10.

85. Wang G, Li W, Lu X, et al. Taurine attenuates oxidative stress and alleviates cardiac failure in type I diabetic rats. Croat Med J 2013;54:171–9.

86. Wang L, Yu Y, Zhang L, et al. Taurine rescues vascular endothelial dysfunction in streptozocin-induced diabetic rats: correlated with downregulation of LOX-1 and ICAM-1 expression on aortas. Eur J Pharmacol 2008;597:75–80.

87. Gavrovskaya L, Ryzhova O, Safonova A, et al. Protective effect of taurine on rats with experimental insulin-dependent diabetes mellitus. Bull Exp Biol Med 2008;146:226–8.

88. Ruan Y, Li M, Wang T, et al. Taurine Supplementation Improves Erectile Function in Rats with Streptozotocin-induced Type 1 Diabetes via Amelioration of Penile Fibrosis and Endothelial Dysfunction. J Sex Med 2016;13:778–85.

89. Arany E, Strutt B, Romanus P, et al. Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia 2004;47:1831–7.

90. Al-Daghri N, Alharbi M, Wani K, et al. Biochemical changes correlated with blood thiamine and its phosphate esters levels in patients with diabetes type 1 (DMT1). Int J Clin Exp Pathol 2015;8:13483–8.

91. Thornalley P, Babaei-Jadidi R, Al Ali H, et al. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia 2007;50:2164–70.

92. Angelousi A, Larger E. Anaemia, a common but often unrecognized risk in diabetic patients: a review. Diabetes Metab 2015;41:18–27.

93. Elbarbary N, Ismail E, Zaki M, et al. Vitamin B complex supplementation as a homocysteine-lowering therapy for early stage diabetic nephropathy in pediatric patients with type 1 diabetes: A randomized controlled trial. Clin Nutr 2019.

94. Stracke H, Gaus W, Achenbach U, et al. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes 2008;116:600–5.

95. Haupt E, Ledermann H, Kopcke W. Benfotiamine in the treatment of diabetic polyneuropathy—a three-week randomized, controlled pilot study (BEDIP study). Int J Clin Pharmacol Ther 2005;43:71–7.

96. Fraser D, Diep L, Hovden I, et al. The effects of long-term oral benfotiamine supplementation on peripheral nerve function and inflammatory markers in patients with type 1 diabetes: a 24-month, double-blind, randomized, placebo-controlled trial. Diabetes Care 2012;35:1095–7.

97. Nagalski A, Bryla J. [Niacin in therapy]. Postepy Hig Med Dosw (Online) 2007;61:288-302.

98. Subramanian S, Chait A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim Biophys Acta 2012;1821:819–25.

99. Fukaya M, Tamura Y, Chiba Y, et al. Protective effects of a nicotinamide derivative, isonicotinamide, against streptozotocin-induced beta-cell damage and diabetes in mice. Biochem Biophys Res Commun 2013;442:92–8.

100. Elliott R, Pilcher C, Stewart A, et al. The use of nicotinamide in the prevention of type 1 diabetes. Ann N Y Acad Sci 1993;696:333–41.

101. Skyler J. Primary and secondary prevention of Type 1 diabetes. Diabet Med 2013;30:161–9.

102. Crino A, Schiaffini R, Ciampalini P, et al. A two-year observational study of nicotinamide and intensive insulin therapy in patients with recent onset type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2005;18:749–54.

103. Visalli N, Cavallo MG, Signore A, et al. A multi-centre randomized trial of two different doses of nicotinamide in patients with recent-onset type 1 diabetes (The IMDIAB VI). Diabetes Metab Res Rev 1999;15:181–5.

104. Crino A, Schiaffini R, Manfrini S, et al. A randomized trial of nicotinamide and vitamin E in children with recent onset type 1 diabetes (IMDIAB IX). Eur J Endocrinol 2004;150:719–24.

105. Fatima N, Faisal S, Zubair S, et al. Role of Pro-Inflammatory Cytokines and Biochemical Markers in the Pathogenesis of Type 1 Diabetes: Correlation with Age and Glycemic Condition in Diabetic Human Subjects. PLoS One 2016;11:e0161548.

106. Odermarsky M, Lykkesfeldt J, Liuba P. Poor vitamin C status is associated with increased carotid intima-media thickness, decreased microvascular function, and delayed myocardial repolarization in young patients with type 1 diabetes. Am J Clin Nutr 2009;90:447–52.

107. Cunningham J. The glucose/insulin system and vitamin C: implications in insulin-dependent diabetes mellitus. J Am Coll Nutr 1998;17:105–8.

108. Beckman J, Goldfine A, Gordon M, et al. Oral antioxidant therapy improves endothelial function in Type 1 but not Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 2003;285:H2392–8.

109. Juhl B, Klein F, Christiansen J. Vitamin C treatment reduces transcapillary escape rate of albumin in type 1 diabetes. Eur J Intern Med 2004;15:428–35.

110. Ceriello A, Novials A, Ortega E, et al. Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes 2012;61:2993–7.

111. Ceriello A, Novials A, Ortega E, et al. Vitamin C further improves the protective effect of GLP-1 on the ischemia-reperfusion-like effect induced by hyperglycemia post-hypoglycemia in type 1 diabetes. Cardiovasc Diabetol 2013;12:97.

112. Hoffman R, Dye A, Bauer J. Ascorbic acid blocks hyperglycemic impairment of endothelial function in adolescents with type 1 diabetes. Pediatr Diabetes 2012;13:607–10.

113. Ceriello A, Novials A, Ortega E, et al. Vitamin C further improves the protective effect of glucagon-like peptide-1 on acute hypoglycemia-induced oxidative stress, inflammation, and endothelial dysfunction in type 1 diabetes. Diabetes Care 2013;36:4104–8.

114. Sabri M, Tavana E, Ahmadi A, et al. The effect of vitamin C on endothelial function of children with type 1 diabetes: an experimental study. Int J Prev Med 2014;5:999–1004.

115. Cazeau R, Huang H, Bauer J, et al. Effect of Vitamins C and E on Endothelial Function in Type 1 Diabetes Mellitus. J Diabetes Res 2016;2016:3271293.

116. Pala D, Barbosa P, Silva C, et al. Acai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women. Clin Nutr 2018;37:618–23.

117. Udani J, Singh B, Singh V, et al. Effects of Acai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: a pilot study. Nutr J 2011;10:45.

118. Alqurashi R, Galante L, Rowland I, et al. Consumption of a flavonoid-rich acai meal is associated with acute improvements in vascular function and a reduction in total oxidative status in healthy overweight men. Am J Clin Nutr 2016;104:1227–35.

119. da Silva Cristino Cordeiro V, de Bem G, da Costa C, et al. Euterpe oleracea Mart. seed extract protects against renal injury in diabetic and spontaneously hypertensive rats: role of inflammation and oxidative stress. Eur J Nutr 2018;57:817–32.

120. Alam F, Shafique Z, Amjad S, et al. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother Res 2019;33:41–54.

121. Takahama U, Hirota S. Interactions of flavonoids with alpha-amylase and starch slowing down its digestion. Food Funct 2018;9:677–87.

122. Najafian M, Ebrahim-Habibi A, Yaghmaei P, et al. Core structure of flavonoids precursor as an antihyperglycemic and antihyperlipidemic agent: an in vivo study in rats. Acta Biochim Pol 2010;57:553–60.

123. Szczuka D, Nowak A, Zaklos-Szyda M, et al. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties. Nutrients 2019;11.

124. Bai L, Gao J, Wei F, et al. Therapeutic Potential of Ginsenosides as an Adjuvant Treatment for Diabetes. Front Pharmacol 2018;9:423.

125. Keen H, Payan J, Allawi J, et al. Treatment of diabetic neuropathy with gamma-linolenic acid. Diabetes Care 1993;16:8–15.

126. Jamal G, Carmichael H. The effect of gamma-linolenic acid on human diabetic peripheral neuropathy: a double-blind placebo-controlled trial. Diabet Med 1990;7:319–23.

127. Dyer O. GMC reprimands doctor for research fraud. BMJ 2003;326:730.

128. Rhee K, Lee C, Kim S, et al. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice. Int J Med Sci 2015;12:987–94.

129. Bernardczyk-Meller J, Siwiec-Proscinska J, Stankiewicz W, et al. [Influence of Eqb 761 on the function of the retina in children and adolescent with long lasting diabetes mellitus—preliminary report]. Klin Oczna 2004;106:569–71.

130. Kim J, Yokoyama K, Araki S. The effects of Ginkgo biloba extract (GBe) on axonal transport microvasculature and morphology of sciatic nerve in streptozotocin-induced diabetic rats. Environ Health Prev Med 2000;5:53–9.

131. da Silva G, Zanoni J, Buttow N. Neuroprotective action of Ginkgo biloba on the enteric nervous system of diabetic rats. World J Gastroenterol 2011;17:898–905.

132. Koltringer P, Langsteger W, Lind P, et al. [Ginkgo biloba extract and folic acid in the therapy of changes caused by autonomic neuropathy]. Acta Med Austriaca 1989;16:35–7 [in German].

133. Behera S, Ray R. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol 2016;92:942–56.

134. Devaraj R, Reddy C, Xu B. Health-promoting effects of konjac glucomannan and its practical applications: A critical review. Int J Biol Macromol 2019;126:273–81.

135. Adeyemi D, Adewole O. Hibiscus sabdariffa renews pancreatic beta-cells in experimental type 1 diabetic model rats. Morphologie 2019;103:80–93.

136. Mohammed Yusof N, Zainalabidin S, Mohd Fauzi N, Budin S. Hibiscus sabdariffa (roselle) polyphenol-rich extract averts cardiac functional and structural abnormalities in type 1 diabetic rats. Appl Physiol Nutr Metab 2018;43:1224–32.

137. Lee W, Wang C, Chen Y, et al. Polyphenol extracts from Hibiscus sabdariffa Linnaeus attenuate nephropathy in experimental type 1 diabetes. J Agric Food Chem 2009;57:2206–10.

138. Croze M, Soulage C. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013;95:1811–27.

139. Yang B, Hodgkinson A, Millward B, Demaine A. Polymorphisms of myo-inositol oxygenase gene are associated with Type 1 diabetes mellitus. J Diabetes Complications 2010;24:404–8.

140. Jung T, Hahm J, Kim J, et al. Determination of urinary Myo-/chiro-inositol ratios from Korean diabetes patients. Yonsei Med J 2005;46:532–8.

141. Salway J, Whitehead L, Finnegan J, et al. Effect of myo-inositol on peripheral-nerve function in diabetes. Lancet 1978;2:1282–4.

142. Gregersen G, Bertelsen B, Harbo H, et al. Oral supplementation of myoinositol: effects on peripheral nerve function in human diabetics and on the concentration in plasma, erythrocytes, urine and muscle tissue in human diabetics and normals. Acta Neurol Scand 1983;67:164–72.

143. Gregersen G, Borsting H, Theil P, Servo C. Myoinositol and function of peripheral nerves in human diabetics. Acta Neurol Scand 1978;58:241–8.

144. Mohammedi K, Bellili-Munoz N, Driss F, et al. Manganese superoxide dismutase (SOD2) polymorphisms, plasma advanced oxidation protein products (AOPP) concentration and risk of kidney complications in subjects with type 1 diabetes. PLoS One 2014;9:e96916.

145. Mollsten A, Jorsal A, Lajer M, et al. The V16A polymorphism in SOD2 is associated with increased risk of diabetic nephropathy and cardiovascular disease in type 1 diabetes. Diabetologia 2009;52:2590–3.

146. Kangas-Kontio T, Vavuli S, Kakko S, et al. Polymorphism of the manganese superoxide dismutase gene but not of vascular endothelial growth factor gene is a risk factor for diabetic retinopathy. Br J Ophthalmol 2009;93:1401–6.

147. Forte G, Bocca B, Peruzzu A, et al. Blood metals concentration in type 1 and type 2 diabetics. Biol Trace Elem Res 2013;156:79–90.

148. Lee S, Jouihan H, Cooksey R, et al. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology 2013;154:1029–38.

149. Manganese-Induced Hypoglycemia. JAMA 1963;183:227.

150. Park J, Kim Y, Kim J, et al. Viscothionin purified from mistletoe (Viscum album var. coloratum Ohwi) induces insulin secretion from pancreatic beta cells. J Ethnopharmacol 2019;234:172–9.

151. Abdallah H, Farag M, Abdel-Naim A, et al. Mechanistic Evidence of Viscum schimperi (Viscaceae) Antihyperglycemic Activity: From a Bioactivity-guided Approach to Comprehensive Metabolite Profiling. Phytother Res 2015;29:1737–43.

152. Eno A, Ofem O, Nku C, et al. Stimulation of insulin secretion by Viscum album (mistletoe) leaf extract in streptozotocin-induced diabetic rats. Afr J Med Med Sci 2008;37:141–7.

153. Turkkan A, Savas H, Yavuz B, et al. The prophylactic effect of Viscum album in streptozotocin-induced diabetic rats. North Clin Istanb 2016;3:83–9.

154. Almalki D, Alghamdi S, Al-Attar A. Comparative Study on the Influence of Some Medicinal Plants on Diabetes Induced by Streptozotocin in Male Rats. Biomed Res Int 2019;2019:3596287.

155. Park J, Jung J, Yang J, Kim H. Olive leaf down-regulates the oxidative stress and immune dysregulation in streptozotocin-induced diabetic mice. Nutr Res 2013;33:942–51.

156. Cvjeticanin T, Miljkovic D, Stojanovic I, et al. Dried leaf extract of Olea europaea ameliorates islet-directed autoimmunity in mice. Br J Nutr 2010;103:1413–24.

157. Pradeep S, Srinivasan K. Amelioration of hyperglycemia and associated metabolic abnormalities by a combination of fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) in experimental diabetes. J Basic Clin Physiol Pharmacol 2017;28:493–505.

158. Abouzed T, Contreras M, Sadek K, et al. Red onion scales ameliorated streptozotocin-induced diabetes and diabetic nephropathy in Wistar rats in relation to their metabolite fingerprint. Diabetes Res Clin Pract 2018;140:253–64.

159. Ikechukwu O, Ifeanyi O. The Antidiabetic Effects of The Bioactive Flavonoid (Kaempferol-3-O-beta-D-6{P- Coumaroyl} Glucopyranoside) Isolated from Allium cepa.Recent Pat Antiinfect Drug Discov 2016;11:44–52.

160. Taj Eldin I, Ahmed E, Elwahab H. Preliminary Study of the Clinical Hypoglycemic Effects of Allium cepa (Red Onion) in Type 1 and Type 2 Diabetic Patients. Environ Health Insights 2010;4:71–7.

161. Eid H, Haddad P. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Curr Med Chem 2017;24:355–64.

162. Shi G, Li Y, Cao Q, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother 2019;109:1085–99.

163. Yurkiv B, Wasser S, Nevo E, Sybirna N. The Effect of Agaricus brasiliensis and Ganoderma lucidum Medicinal Mushroom Administration on the L-arginine/Nitric Oxide System and Rat Leukocyte Apoptosis in Experimental Type 1 Diabetes Mellitus. Int J Med Mushrooms 2015;17:339–50.

164. Tie L, Yang H, An Y, et al. Ganoderma lucidum polysaccharide accelerates refractory wound healing by inhibition of mitochondrial oxidative stress in type 1 diabetes. Cell Physiol Biochem 2012;29:583–94.

165. Ma H, Hsieh J, Chen S. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry 2015;114:109–13.

166. Jansen J, Rosenkranz E, Overbeck S, et al. Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. J Nutr Biochem 2012;23:1458–66.

167. Lin C, Huang Y. Chromium, zinc and magnesium status in type 1 diabetes. Curr Opin Clin Nutr Metab Care 2015;18:588–92.

168. Jayawardena R, Ranasinghe P, Galappatthy P, et al. Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 2012;4:13.

169. Cunningham J, Fu A, Mearkle P, Brown R. Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 1994;43:1558–62.

170. Seneviratne C, Dombi G, Liu W, Dain J. The in vitro glycation of human serum albumin in the presence of Zn(II). J Inorg Biochem 2011;105:1548–54.

171. Tarwadi K, Agte V. Effect of micronutrients on methylglyoxal-mediated in vitro glycation of albumin. Biol Trace Elem Res 2011;143:717–25.

172. Abuaisha BB, Costanzi JB, Boulton AJ. Acupuncture for the treatment of chronic painful peripheral diabetic neuropathy: a long-term study. Diabetes Res Clin Pract 1998;39:115-21.

173. Zheg HT, Huang XM, Sun JH. Treatment of diabetic cystopathy by acupuncture and moxibustion. J Tradit Chin Med 1986;6:243-8.

174. Zhang W. Acupuncture for treatment of diabetic urinary bladder neural dysfunction—a report of 36 cases. J Tradit Chin Med 1997;17:211-3.

175. Nansel T, Lipsky L, Liu A. Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes. Am J Clin Nutr 2016;104:81–7.

176. Giacco R, Parillo M, Rivellese AA, et al. Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural foods improves blood glucose control and reduces the number of hypoglycemic events in type 1 diabetic patients. Diabetes Care 2000;23:1461–6.

177. Queiroz K, Novato Silva I, de Cassia Goncalves Alfenas R. Influence of the glycemic index and glycemic load of the diet in the glycemic control of diabetic children and teenagers. Nutr Hosp 2012;27:510–5.

178. Thomas D, Elliott E. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus. Cochrane Database Syst Rev 2009:Cd006296.

179. Bozzetto L, Giorgini M, Alderisio A, et al. Glycaemic load versus carbohydrate counting for insulin bolus calculation in patients with type 1 diabetes on insulin pump. Acta Diabetol 2015;52:865–71.

180. Paterson M, King B, Smart C, et al. Impact of dietary protein on postprandial glycaemic control and insulin requirements in Type 1 diabetes: a systematic review. Diabet Med 2019.

181. Ko G, Obi Y, Tortorici A, Kalantar-Zadeh K. Dietary protein intake and chronic kidney disease. Curr Opin Clin Nutr Metab Care 2017;20:77–85.

182. Evert A, Dennison M, Gardner C, et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019;42:731–54.

183. Muntoni S, Cocco P, Aru G, Cucca F. Nutritional factors and worldwide incidence of childhood type 1 diabetes. Am J Clin Nutr 2000;71:1525–9.

184. Lamb M, Miller M, Seifert J, et al. The effect of childhood cow's milk intake and HLA-DR genotype on risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young. Pediatr Diabetes 2015;16:31–8.

185. Luopajarvi K, Savilahti E, Virtanen S, et al. Enhanced levels of cow's milk antibodies in infancy in children who develop type 1 diabetes later in childhood. Pediatr Diabetes 2008;9:434–41.

186. Knip M, Virtanen SM, Seppä K, et al. Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med 2010;363:1900–8.

187. Knip M, Akerblom H, Al Taji E, et al. Effect of Hydrolyzed Infant Formula vs Conventional Formula on Risk of Type 1 Diabetes: The TRIGR Randomized Clinical Trial. JAMA 2018;319:38–48.

188. Vaarala O, Ilonen J, Ruohtula T, et al. Removal of Bovine Insulin from Cow's Milk Formula and Early Initiation of Beta-Cell Autoimmunity in the FINDIA Pilot Study. Arch Pediatr Adolesc Med 2012;166:608–14.

189. Strychar I, Cohn J, Renier G, et al. Effects of a diet higher in carbohydrate/lower in fat versus lower in carbohydrate/higher in monounsaturated fat on postmeal triglyceride concentrations and other cardiovascular risk factors in type 1 diabetes. Diabetes Care 2009;32:1597–9.

190. Strychar I, Ishac A, Rivard M, et al. Impact of a high-monounsaturated-fat diet on lipid profile in subjects with type 1 diabetes. J Am Diet Assoc 2003;103:467–74.

191. Donaghue K, Pena M, Chan A, et al. Beneficial effects of increasing monounsaturated fat intake in adolescents with type 1 diabetes. Diabetes Res Clin Pract 2000;48:193–9.

192. Bozzetto L, Alderisio A, Clemente G, et al. Gastrointestinal effects of extra-virgin olive oil associated with lower postprandial glycemia in type 1 diabetes. Clin Nutr 2018.

193. Bozzetto L, Alderisio A, Giorgini M, et al. Extra-Virgin Olive Oil Reduces Glycemic Response to a High-Glycemic Index Meal in Patients with Type 1 Diabetes: A Randomized Controlled Trial. Diabetes Care 2016;39:518–24.

194. Evert A, Dennison M, Gardner C, et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019;42:731–54.

195. Added Sugars. American Heart Association [updated 2018 Apr 17]. Available from URL: https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/sugar/added-sugars.

196. Wu N, Bredin S, Guan Y, et al. Cardiovascular Health Benefits of Exercise Training in Persons Living with Type 1 Diabetes: A Systematic Review and Meta-Analysis. J Clin Med 2019;8.

197. Houlder S, Yardley J. Continuous Glucose Monitoring and Exercise in Type 1 Diabetes: Past, Present and Future. Biosensors (Basel) 2018;8.

198. Evert A, Dennison M, Gardner C, et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019;42:731–54.

199. Tetzschner R, Norgaard K, Ranjan A. Effects of alcohol on plasma glucose and prevention of alcohol-induced hypoglycemia in type 1 diabetes-A systematic review with GRADE. Diabetes Metab Res Rev 2018;34.

200. Harjutsalo V, Feodoroff M, Forsblom C, Groop P. Patients with Type 1 diabetes consuming alcoholic spirits have an increased risk of microvascular complications. Diabet Med 2014;31:156–64.

201. Beulens J, Kruidhof J, Grobbee D, et al. Alcohol consumption and risk of microvascular complications in type 1 diabetes patients: the EURODIAB Prospective Complications Study. Diabetologia 2008;51:1631–8.

202. Zhu P, Pan X, Sheng L, et al. Cigarette Smoking, Diabetes, and Diabetes Complications: Call for Urgent Action. Curr Diab Rep 2017;17:78.

203. Heinemann L, Stuhr A, Brown A, et al. Self-measurement of Blood Glucose and Continuous Glucose Monitoring—Is There Only One Future? Eur Endocrinol 2018;14:24–9.

204. Bloomgarden Z. Beyond HbA1c. J Diabetes 2017;9:1052–3.

205. Galderisi A, Sherr J. A Technological Revolution: The Integration of New Treatments to Manage Type 1 Diabetes. Pediatr Ann 2019;48:e311–8.

206. Ruedy K, Parkin C, Riddlesworth T, Graham C. Continuous Glucose Monitoring in Older Adults with Type 1 and Type 2 Diabetes Using Multiple Per day Injections of Insulin: Results from the DIAMOND Trial. J Diabetes Sci Technol 2017;11:1138–46.

Copyright © 2019 Healthnotes, Inc. All rights reserved. www.healthnotes.com

Learn more about Healthnotes, the company.

The information presented by Healthnotes is for informational purposes only. It is based on scientific studies (human, animal, or in vitro), clinical experience, or traditional usage as cited in each article. The results reported may not necessarily occur in all individuals. Self-treatment is not recommended for life-threatening conditions that require medical treatment under a doctor's care. For many of the conditions discussed, treatment with prescription or over the counter medication is also available. Consult your doctor, practitioner, and/or pharmacist for any health problem and before using any supplements or before making any changes in prescribed medications. Information expires December 2019.