High Homocysteine

Health Condition

High Homocysteine

  • Vitamin B6, Vitamin B12, and Folic Acid

    Vitamin B6, folic acid, and vitamin B12 all play a role in converting homocysteine to other substances within the body and have consistently lowered homocysteine levels in trials.

    Dose:

    400 to 1,000 mcg of folic acid daily, 10 to 50 mg of vitamin B6 daily, and 50 to 300 mcg of vitamin B12 daily
    Vitamin B6, Vitamin B12, and Folic Acid
    ×

    Vitamin B6, folic acid, and vitamin B12 all play a role in converting homocysteine to other substances within the body. By so doing, they consistently lower homocysteine levels in research trials,27,28,29 a finding that is now well accepted. Several studies have used (and some doctors recommend) 400–1,000 mcg of folic acid per day, 10–50 mg of vitamin B6 per day, and 50–300 mcg of vitamin B12 per day.

    Of these three vitamins, folic acid supplementation lowers homocysteine levels the most for the average person.30,31 It also effectively lowers homocysteine in people on kidney dialysis.32 In 1996, the FDA required that all enriched flour, rice, pasta, cornmeal, and other grain products contain 140 mcg of folic acid per 3½ ounces.33 This level of fortification has led to a measurable decrease in homocysteine levels.34 However, even higher levels of food fortification with folic acid have been reported to be more effective in lowering homocysteine,35 suggesting that the FDA-mandated supplementation is inadequate to optimally protect people against high homocysteine levels. Therefore, people wishing to lower their homocysteine levels should continue to take folic acid supplements despite the FDA-mandated fortification program.

  • Betaine (Trimethylglycine)

    Betaine (trimethylglycine) has been shown to lower homocysteine levels.

    Dose:

    1.5 to 6 grams daily
    Betaine (Trimethylglycine)
    ×
     

    Betaine (trimethylglycine) (6 grams per day) and choline (2 grams per day) have each been shown to lower homocysteine levels.36,37 Choline in the amount of 2.6 grams per day (provided as 34 grams per day of soy lecithin) has also been shown to lower homocysteine levels in a double-blind trial.38 More recently, 1.5 grams of betaine per day, an amount similar to that in a typical diet, also has been found to lower homocysteine levels.39 Doctors usually consider supplementation with these nutrients only when supplementation with folic acid, vitamin B6, and vitamin B12 do not reduce homocysteine levels sufficiently. The results of this study, however, point to the potential benefit of increasing one’s intake of foods rich in betaine (such as whole wheat, spinach, beets, and other plant foods).

  • Lecithin (Phosphatidyl Choline)

    Choline has been shown to lower homocysteine levels.

    Dose:

    2 grams daily choline or 34 grams daily lecithin
    Lecithin (Phosphatidyl Choline)
    ×
     

    Betaine (trimethylglycine) (6 grams per day) and choline (2 grams per day) have each been shown to lower homocysteine levels.40,41 Choline in the amount of 2.6 grams per day (provided as 34 grams per day of soy lecithin) has also been shown to lower homocysteine levels in a double-blind trial.42 More recently, 1.5 grams of betaine per day, an amount similar to that in a typical diet, also has been found to lower homocysteine levels.43 Doctors usually consider supplementation with these nutrients only when supplementation with folic acid, vitamin B6, and vitamin B12 do not reduce homocysteine levels sufficiently. The results of this study, however, point to the potential benefit of increasing one’s intake of foods rich in betaine (such as whole wheat, spinach, beets, and other plant foods).

  • Vitamin B2

    Vitamin B2 (riboflavin) supplementation has been shown to lower homocysteine levels in certain people.

    Dose:

    1.6 mg daily
    Vitamin B2
    ×
     

    Vitamin B2 (riboflavin) supplementation (1.6 mg per day) has been shown to lower homocysteine levels by 22 to 40% in a subset of the population that has a certain genetic variant of an enzyme involved in folic acid metabolism (the 677Cà T polymorphism for the methylenetetrahydrofolate reductase gene).44 Approximately 15 to 20% of the population carries this gene and could benefic from taking riboflavin. Since genetic testing is expensive and not readily available, it would seem reasonable for all people trying to lower their homocysteine levels to include riboflavin in their regimen of B vitamin supplementation.

What Are Star Ratings
×
Reliable and relatively consistent scientific data showing a substantial health benefit.
Contradictory, insufficient, or preliminary studies suggesting a health benefit or minimal health benefit.
For an herb, supported by traditional use but minimal or no scientific evidence. For a supplement, little scientific support.

References

1. Stampfer MJ, Malinow R, Willett WC, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992;268:877-81.

2. Bostom AG, Silbershatz H, Rosenberg IH, et al. Nonfasting plasma total homocysteine levels and all-cause and cardiobascular disease mortality in elderly Framingham men and women. Arch Intern Med 1999;159:1077-80.

3. Folsom AR, Nieto FJ, McGovern PG, et al. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins. Circulation 1998;98:204-10.

4. Kuller LH, Evans RW. Homocysteine, vitamins, and cardiovascular disease. Circulation 1998;98:196-9 [editorial/review].

5. Christen WG, Ajani UA, Glynn RJ, Hennekens CH. Blood levels of homocysteine and increased risks of cardiovascular disease. Arch Intern Med 2000;160:422-34.

6. Meleady R, Graham I. Plasma homocysteine as a cardiovascular risk factor: causal, consequential, or of no consequence? Nutr Rev 1999;57:299-305 [review].

7. Williams JE, Paton CC, Siegler IC, et al. Anger proneness predicts coronary heart disease risk: prospective analysis from the atherosclerosis risk in communities (ARIC) study. Circulation 2000;101:2034-9.

8. Kawachi I, Sparrow D, Spiro A 3rd, et al. A prospective study of anger and coronary heart disease. The Normative Aging Study. Circulation 1996;94:2090-5.

9. Stoney CM, Engebretson TO. Plasma homocysteine concentrations are positively associated with hostility and anger. Life Sci 2000;66:2267-75.

10. Perry IJ, Refsum H, Morris RW, et al. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 1995;346:1395-8.

11. Langman LJ, Ray JG, Evrovski J, et al. Hyperhomocyst(e)inemia and the increased risk of venous thromboembolism: more evidence from a case-control study. Arch Intern Med 2000;160:961-4.

12. Brattstrom LE, Hultberg BL, Hardebo JE. Folic acid responsive postmenopausal homocysteinemia. Metabolism 1985;34:1073-7.

13. Cattaneo M, Vecchi M, Zighetti ML, et al. High prevalence of hyperhomocysteinemia in patients with inflammatory bowel disease: a pathogenic link with thromboembolic complications? Thromb Haemost 1998;80:542-5.

14. Clarke R, Smith D, Jobst KA, et al. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 1998;55:1449-55.

15. Hoogeveen EK, Kostense PJ, Jakobs C, et al. Hyperhomocysteinemia increases risk of death, especially in type 2 diabetes : 5-year follow-up of the Hoorn Study. Circulation 2000;101:1506-11.

16. Sutterlin M, Bussen S, Ruppert D, Steck T. Serum levels of folate and cobalamin in women with recurrent spontaneous abortion. Hum Reprod 1997;12:2292-6.

17. Wouters MG, Boers GH, Blom HJ, et al. Hyperhomocysteinemia: a risk factor in women with unexplained recurrent early pregnancy loss. Fertil Steril 1993;60:820-5.

18. Steegers-Theunissen RP, Boers GH, Blom HJ, et al. Hyperhomocysteinaemia and recurrent spontaneous abortion or abruptio placentae. Lancet 1992;339:1122-3 [letter].

19. Quere I, Bellet H, Hoffet M, et al. A woman with five consecutive fetal deaths: case report and retrospective analysis of hyperhomocysteinemia prevalence in 100 consecutive women with recurrent miscarriages. Fertil Steril 1998;69:152-4.

20. Nelen WL, Blom HJ, Steegers EA, et al. Homocysteine and folate levels as risk factors for recurrent early pregnancy loss. Obstet Gynecol 2000;95:519-24.

21. de Vries JI, Dekker GA, Huijgens PC, et al. Hyperhomocysteinaemia and protein S deficiency in complicated pregnancies. Br J Obstet Gynaecol 1997;104:1248-54.

22. Goddijn-Wessel TA, Wouters MG, van de Molen EF, et al. Hyperhomocysteinemia: a risk factor for placental abruption or infarction. Eur J Obstet Gynecol Reprod Biol 1996;66:23-9.

23. Leeda M, Riyazi N, de Vries JI, et al. Effects of folic acid and vitamin B6 supplementation on women with hyperhomocysteinemia and a history of preeclampsia or fetal growth restriction. Am J Obstet Gynecol 1998;179:135-9.

24. Dekker GA, de Vries JI, Doelitzsch PM, et al. Underlying disorders associated with severe early-onset preeclampsia. Am J Obstet Gynecol 1995;173:1042-8.

25. Rajkovic A, Catalano PM, Malinow MR. Elevated homocyst(e)ine levels with preeclampsia. Obstet Gynecol 1997;90:168-71.

26. Catargi B, Parrot-Roulaud F, Cochet C, et al. Homocysteine, hypothyroidism, and effect of thyroid hormone replacement. Thyroid 1999;9:1163-6.

27. Glueck CJ, Shaw P, Land JE, et al. Evidence that homocysteine is an independent risk factor for atherosclerosis in hyperlipidemic patients. Am J Cardiol 1995;75:132-6.

28. Ubbink JB, Vermaak WJH, van der Merwe A, Becker PJ. Vitamin B12, vitamin B6, and folate nutritional status in men with hyperhomocysteinemia. Am J Clin Nutr 1993;57:47-53.

29. Ubbink JB, Vermaak WJH, ven der Merwe A, et al. Vitamin requirements for the treatment of hyperhomocysteinemia in humans. J Nutr 1994;124:1927-33.

30. Dierkes J, Kroesen M, Pietrzik K. Folic acid and vitamin B6 supplementation and plasma homocysteine concentrations in healthy young women. Int J Vitam Nutr Res 1998;68:98-103.

31. Stein JH, McBride PE. Hyperhomocysteinemia and atherosclerotic vascular disease: pathophysiology, screening, and treatment. Arch Intern Med 1998;158:1301-6.

32. McGregor D, Shand B, Lynn K. A controlled trial of the effect of folate supplements on homocysteine, lipids and hemorheology in end-stage renal disease. Nephron 2000;85:215-20.

33. Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid. Fed Regist 1996;61:8781-97.

34. Jacques PF, Selhub J, Bostom AG, et al. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999;340:1449-54.

35. Malinow MR, Duell PB, Hess DL, et al. Reduction of plasma homocyst(e)ine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease. N Engl J Med 1998;338:1009-15.

36. Wilcken DEL, Wilcken B, Dudman NP, Tyrrell PA. Homocystinuria—the effects of betaine in the treatment of patients not responsive to pyridoxine. N Engl J Med 1983;309:448-53.

37. Jancin B. Amino acid defect causes 20% of atherosclerosis in CHD. Fam Pract News 1994(Oct 15):7.

38. Olthof MR, Brink EJ, Katan MB, Verhoef P. Choline supplemented as phosphatidylcholine decreases fasting and postmethionine-loading plasma homocysteine concentrations in healthy men. Am J Clin Nutr 2005;82:111-7.

39. Olthof MR, van Vliet T, Boelsma E, Verhoef P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr 2003;133:4135-8.

40. Wilcken DEL, Wilcken B, Dudman NP, Tyrrell PA. Homocystinuria—the effects of betaine in the treatment of patients not responsive to pyridoxine. N Engl J Med 1983;309:448-53.

41. Jancin B. Amino acid defect causes 20% of atherosclerosis in CHD. Fam Pract News 1994(Oct 15):7.

42. Olthof MR, Brink EJ, Katan MB, Verhoef P. Choline supplemented as phosphatidylcholine decreases fasting and postmethionine-loading plasma homocysteine concentrations in healthy men. Am J Clin Nutr 2005;82:111-7.

43. Olthof MR, van Vliet T, Boelsma E, Verhoef P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr 2003;133:4135-8.

44. McNulty H, Dowey LR, Strain JJ, et al. Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677Cà T polymorphism. Circulation2006;113:74-80.

45. Jang Y, Lee JH, Kim OY, et al. Consumption of whole grain and legume powder reduces insulin demand, lipid peroxidation, and plasma homocysteine concentrations in patients with coronary artery disease: randomized controlled clinical trial. Arterioscler Thromb Vasc Biol2001;21:2065-71.

46. Broekmans WM, Klopping-Ketelaars IA, Schuurman CR, et al. Fruits and vegetables increase plasma carotenoids and vitamins and decrease homocysteine in humans. J Nutr 2000;130:1578-83.

47. Boers GHJ, Smals AGH, Trijbels FJM, et al. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 1985;313:709-15.

48. Nygård O, Refsum H, Ueland PM, Vollset SE. Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland Homocysteine Study. Am J Clin Nutr 1998;67:263-70.

49. Stolzen berg-Solomon RZ, Miller ER III, Maguire MG, et al. Association of dietary protein intake and coffee consumption with serum homocysteine concentrations in an older population. Am J Clin Nutr 1999;69:467-75.

50. Nieto FJ, Comstock GW, Chambless LE, Malinow RM. Coffee consumption and plasma homocyst(e)ine: results from the Atherosclerosis Risk in Communities Study. Am J Clin Nutr 1997;66:1475-85 [letter].

51. DeRose DJ, Charles-Marcel ZL, Jamison JM, et al. Vegan diet-based lifestyle program rapidly lowers homocysteine levels. Prev Med 2000;30:225-33.

Copyright © 2024 TraceGains, Inc. All rights reserved.

Learn more about TraceGains, the company.

The information presented by TraceGains is for informational purposes only. It is based on scientific studies (human, animal, or in vitro), clinical experience, or traditional usage as cited in each article. The results reported may not necessarily occur in all individuals. Self-treatment is not recommended for life-threatening conditions that require medical treatment under a doctor's care. For many of the conditions discussed, treatment with prescription or over the counter medication is also available. Consult your doctor, practitioner, and/or pharmacist for any health problem and before using any supplements or before making any changes in prescribed medications. Information expires December 2024.

Log In

You need to log into the site to use this feature

Create A Free Account To Use Medicine Chest

This feature requires registration. Sign up or log in to your free WellRx account to gain access to this and other tools to help make managing your medications and wellness easier.

Benefits Include:

Store & manage your medication list
Medication pricing updates
Import medication from your pharmacy
Medication information
Pill & refill reminders
Medication journal & mood log

Sign up to use Medicine Chest

Create A Free Account To Use this feature

This feature requires registration. Sign up or log in to your free WellRx account to gain access to this and other tools to help make managing your medications and wellness easier.

Benefits Include:

Store & manage your medication list
Medication pricing updates
Import medication from your pharmacy
Medication information
Pill & refill reminders
Medication journal & mood log

Sign up to use this feature

You will be redirected to your program in 5 seconds.

Hi there.

Our Terms and Conditions and Privacy Policy have recently been updated.

Learn More


I Accept

By declining you will be logged out of your account

;