This monograph discusses the use of the ibuprofen and pseudoephedrine combination products for the temporary relief of symptoms associated with nasal congestion, headache, mild pain, and fever. Clinicians may wish to consult the individual drug monographs for more specific information.
Ibuprofen and pseudoephedrine are used together in oral preparations for the temporary relief of symptoms associated with sinusitis, the common cold or flu including nasal congestion, headache, mild pain, and fever. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) with analgesic and antipyretic effects. Pseudoephedrine is a sympathomimetic amine used for its nasal and sinus decongestant properties. All NSAIDs, including ibuprofen, carry an increased risk of serious gastrointestinal (GI) adverse effects and may carry an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke. A retrospective review by CDER of short-term efficacy trials of non-prescription strength naproxen indicated that an increase in CV events was not apparent during the studies. However, it is important to note that CV risk was not the focus of the studies, and further information is needed to determine if a cause and effect relationship exists between non-prescription strength NSAID use and adverse cardiovascular outcomes. The FDA-approved labeling of OTC ibuprofen; pseudoephedrine products advises patients to not exceed recommended dose or duration, as the risk for adverse effects may increase with increased use. Further, if such a product is needed for longer than 10 days, the patient should consult their health care provider. Pseudoephedrine can be diverted for use as a substrate for the illegal synthesis of amphetamine and methamphetamine. As a result, the Combat Methamphetamine Epidemic Act of 2005 was implemented. This Act governs the sale and purchase of all OTC products containing pseudoephedrine, ephedrine, or phenylpropanolamine in the U.S.. Retailers must keep products in locked cabinets or behind counters prior to purchase, enter individual product purchases and amounts into a log and maintain it for at least 2 years following each sale, require photo identification and verify customer-required entries into the log, and ensure daily and monthly allowable limits on purchases are not exceeded (review Patriot Act Title VII for more information on legal requirements). Ibuprofen; pseudoephedrine is available as an over-the-counter (OTC) product, either in a tablet formulation or as an oral suspension for children.
NOTE: In January 2007, the CDC warned caregivers and healthcare providers of the risk for serious injury or fatal overdose from the administration of cough and cold products to children and infants less than 2 years of age. This warning followed an investigation of the deaths of three (3) infants less than 6 months of age that were attributed to the inadvertent inappropriate use of these products. The symptoms preceding these deaths have not been clearly defined, and there is a lack of conclusive data describing the exact cause of death. The report estimated that 1519 children less than 2 years of age were treated in emergency departments during 2004-2005 for adverse events related to cough and cold medications. In October 2007, the FDA Nonprescription Drug Advisory Committee and the Pediatric Advisory Committee recommended that nonprescription cough and cold products containing pseudoephedrine, dextromethorphan, chlorpheniramine, diphenhydramine, brompheniramine, phenylephrine, clemastine, or guaifenesin not be used in children less than 6 years of age. In January 2008, the FDA issued a Public Health Advisory recommending that OTC cough and cold products not be used in infants and children less than 2 years. An official ruling regarding the use of these products in children greater than 2 years has not yet been announced. The FDA recommends that if parents and caregivers use cough and cold products in children greater than 2 years, labels should be read carefully, caution should be used when administering multiple products, and only measuring devices specifically designed for use with medications should be used. While some combination cough/cold products containing these ingredients are available by prescription only and are not necessarily under scrutiny by the FDA, clinicians should thoroughly assess each patient's use of similar products, both prescription and nonprescription, to avoid duplication of therapy and the potential for inadvertent overdose.
General Administration Information
For storage information, see the specific product information within the How Supplied section.
Route-Specific Administration
Oral Administration
-Ibuprofen; pseudoephedrine may be administered with meals to minimize GI irritation. Administer last dose of the day at least 2 hours before bedtime to minimize insomnia.
Oral Liquid Formulations
-Oral solutions: Administer ibuprofen; pseudoephedrine oral solution using a calibrated measuring device.
The adverse effects observed for ibuprofen; pseudoephedrine are similar to those reported for the individual drug components which are discussed in this section.
CNS effects such as anxiety, restlessness, headache, lightheadedness, dizziness, insomnia, and psychological disturbances, including hallucinations and psychosis, have been reported during therapy with pseudoephedrine. Seizures may occur, but have more commonly occurred with excessive dosage, overdosage, or in patients with renal failure receiving the maximum dosage (without dosage adjustment). Overuse of drugs for treating acute headaches, including NSAIDs, may lead to medication overuse headache. Patients may experience migraine-like daily headaches or a significant increase in migraine attack frequency. Discontinuation of the overused drug and treatment of withdrawal symptoms (e.g., transient worsening of headache) may be necessary. Advise patients about the risks of medication overuse (e.g., use of ibuprofen for at least 15 days/month or any combination of therapy for at least 10 days/month) and encourage them to keep a written record of headache frequency and drug use. Pediatric guidelines recommend no more than 14 days/month of over-the-counter medication and no more than 9 days/month of any combination of therapy (e.g., triptans, analgesics) to avoid medication overuse headache.
Peripheral edema and heart failure can occur with NSAIDs including ibuprofen and caution should be exercised when administering ibuprofen to patients with congestive heart failure or other conditions predisposing to fluid retention. As with any sympathomimetic agent, cardiovascular adverse effects may occur including angina, cardiac arrhythmias (or arrhythmia exacerbation), hypertension, myocardial infarction or stroke; these effects generally occur at excessive dosage or in patients at higher risk (see Precautions). Cardiac arrhythmias secondary to pseudoephedrine which may occur in the general population at therapeutic doses include palpitations, premature ventricular contractions (PVCs), supraventricular tachycardia (SVT) or sinus tachycardia. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses (240 mg/day) do not appear at high risk for significant elevations in blood pressure, however, increased blood pressures (especially systolic hypertension) has been reported seen in some patients with controlled hypertension.
Nausea/vomiting, diarrhea, constipation, dyspepsia, flatulence, pyrosis (heartburn) and abdominal pain could represent a minor adverse reaction to ibuprofen therapy in some patients or serious GI toxicity in others. These symptoms correlate poorly with the degree of mucosal injury. When feasible, monitor stool for blood loss. During chronic administration, more serious effects, such as peptic ulcer disease, esophagitis, gastroesophageal reflux disease (GERD), and gastritis, leading to GI bleeding, GI ulceration (duodenal ulcer or gastric ulcer) or even GI perforation or GI obstruction can occur at any time, with or without warning. These effects can be potentiated by alcohol and smoking. Although ulcers can heal even when NSAID therapy is continued, in general, ibuprofen therapy is not advised in those with active peptic ulcer disease. Pseudoephedrine also can produce GI effects such as nausea/vomiting, and anorexia. Ischemic colitis has been associated with the use of pseudoephedrine and may present with symptoms of abdominal pain and bloody diarrhea. Colitis may result from reversible splanchnic arterial vasoconstriction and may occur with acute or chronic use; the ischemic symptoms usually resolve upon discontinuation of pseudoephedrine. Colitis has also been reported rarely with NSAID therapy, including ibuprofen.
Pancreatitis has been reported in < 1% of patients on ibuprofen.
NSAIDs, such as ibuprofen; pseudoephedrine, have been associated with hepatotoxicity such as hepatitis or jaundice. Usually, this is an infrequent occurrence, but patients should be monitored closely if elevated hepatic enzymes are observed during therapy.
NSAIDs, like ibuprofen; pseudoephedrine, have been associated with nephrotoxicity. It is well known that vasodilatory renal prostaglandins and the potent vasoconstrictor angiotensin II work in concert to maintain renal blood flow. Inhibition of renal prostaglandins by NSAIDs can cause renal insufficiency. This problem can be manifest as hyperkalemia, hyperuricemia, or azotemia. With some NSAIDS, renal papillary necrosis, nephrotic syndrome, hematuria, proteinuria, and interstitial nephritis has been reported. Genitourinary effects of pseudoephedrine may include dysuria.
NSAIDs, like ibuprofen; pseudoephedrine, have been shown to cause platelet dysfunction; this effect, however, is transient and reversible. Since inhibition of platelet aggregation appears to correlate with plasma concentrations of the drug, the individual half-life of each NSAID determines the duration of this effect. Hematologic effects due to ibuprofen include neutropenia, agranulocytosis, aplastic anemia, hemolytic anemia, pancytopenia, and thrombocytopenia.
Several significant dermatological reactions have been reported infrequently with pseudoephedrine use. These reactions include: fixed drug eruption or exanthema, erythema, contact dermatitis, and other rash (unspecified). In general, the onset of the skin reactions occurs within 24 hours of administration and resolves in 2-3 days following drug discontinuation. Maculopapular rash and urticaria have been reported in 1-3% of patients taking NSAIDs. Photosensitivity has been reported in less than 1% of patients receiving NSAIDs. Other dermatologic reactions associated with NSAIDS occur less frequently, including bullous rash, exfoliative dermatitis, Stevens-Johnson syndrome, toxic epidermal necrolysis, and vasculitis. Angioedema is another allergic-type reaction that has been reported with ibuprofen, although the incidence is unknown. Patients should be instructed to discontinue ibuprofen; pseudoephedrine and contact their health care provider if erythema, rash, blisters, or other skin reactions develop.
Aseptic meningitis has been reported rarely with NSAID therapy in patients with systemic lupus erythematosus (SLE). Symptoms of aseptic meningitis include confusion, drowsiness, general feeling of illness, severe headache, nausea, nuchal rigidity, and photophobia. Ibuprofen has been the most common NSAID implicated in this adverse reaction. Although NSAID-induced aseptic meningitis is primarily reported in patients with SLE, patients with other disease states such as ankylosing spondylitis, connective tissue disease, osteoarthritis, and rheumatoid arthritis have developed NSAID-induced aseptic meningitis.
Ocular effects can occur with pseudoephedrine products. These can include increased intraocular pressure (ocular hypertension) and photophobia. Altered vision (blurred vision or visual impairment) has been reported infrequently in patients receiving ibuprofen. Vision generally improves when the drug is discontinued. The mechanism for visual disturbances is unclear. Other changes in the special senses due to ibuprofen include tinnitus and hearing loss.
Ibuprofen has been associated infrequently (<1%; without causal relationship) with the development of pseudotumor cerebri (benign intracranial hypertension).
Ibuprofen is contraindicated in patients with salicylate hypersensitivity or NSAID hypersensitivity who have experienced asthma, urticaria, or other allergic reactions after taking aspirin or other NSAIDs. Severe, rarely fatal, anaphylactoid reactions to ibuprofen have been reported in such patients. Ibuprofen should not be used in asthma patients with aspirin-sensitive asthma or the aspirin triad because of the approximate 5% cross-sensitivity that occurs between aspirin and NSAIDs. The triad typically occurs in asthmatic patients who experience rhinitis with or without nasal polyps, or who experience severe, potentially fatal, acute bronchospasm after taking aspirin or other NSAIDs. The use of NSAIDs, including products containing ibuprofen, may cause serious and potentially fatal skin reactions including exfoliative dermatitis, Stevens-Johnson syndrome, and toxic epidermal necrolysis. Patients should be instructed to discontinue the medication and contact their health care provider if erythema, rash, blisters, or related skin reactions develop.
Chronic use of ibuprofen can result in gastritis, ulceration with or without perforation, and/or GI bleeding, which can occur at any time, often without preceding symptoms. Therefore, ibuprofen is relatively contraindicated in patients with a history of or active GI disease including peptic ulcer disease, ulcerative colitis, or GI bleeding. It is recommended not to initiate therapy with maximum doses in these patients due to the likely increase frequency of adverse reactions. Patients at increased risk for NSAID-induced GI bleeding include those receiving concurrent myelosuppressive chemotherapy, corticosteroid therapy, or anticoagulant therapy, tobacco smoking patients, older patients, and patients with alcoholism. Patients should not self-medicate with ibuprofen if they consume 3 or more alcoholic beverages per day. All patients receiving prolonged treatment should be routinely monitored for potential GI ulceration and bleeding (see Adverse Reactions).
Ibuprofen, like all NSAIDs, may exacerbate hypertension and congestive heart failure and may carry an increased risk of serious cardiovascular (CV) thrombotic events, myocardial infarction, and stroke, which can be fatal. The risk may increase with duration of use, and patients with CV disease or risk factors for CV disease (e.g., high blood pressure). In addition, ACC/AHA guidelines state NSAIDs should not be administered to patients presenting with and hospitalized for ST-elevation myocardial infarction (STEMI) due to increased risk of mortality, reinfarction, hypertension, heart failure, and myocardial rupture associated with their use. A retrospective review by FDA Advisory Committees of short-term efficacy trials of non-prescription strength naproxen indicated that an increase in CV events was not apparent during the studies. Therefore, a boxed warning in non-prescription NSAID product labeling is not required at this time. However, it is important to note that CV risk was not the focus of the studies and further information is needed to determine if a cause and effect relationship exists between non-prescription strength NSAID use and adverse cardiovascular outcomes. Meta-analyses have demonstrated that the effect of NSAIDs on blood pressure is the greatest in hypertensive individuals receiving antihypertensive medication. Normotensive subjects receiving antihypertensive therapy had higher increases in blood pressure than subjects with uncontrolled hypertension or normotensive subjects receiving no hypertensive therapy. NSAID-induced fluid retention may exacerbate congestive heart failure or hypertension. Although considered safe in the general population of controlled hypertensives, increased blood pressure (especially systolic hypertension) has been reported in individual patients receiving pseudoephedrine. Hypertension or hypertensive crisis may occur when pseudoephedrine is used at higher than recommended doses, when combined with a MAOI therapy, when used in the setting of substance abuse, or overdosage via its sympathomimetic effects. Ibuprofen; pseudoephedrine should be avoided in patients with uncontrolled or severe hypertension, significant coronary artery disease (including history of myocardial infarction, acute myocardial infarction, or angina), acute cardiac arrhythmias (tachycardia), and stroke. Considerable caution should be used in patients with controlled or mild hypertension, heart failure, cardiomyopathy, ischemic heart disease, or other cardiac disease.
Prescription NSAIDs are contraindicated for the treatment of peri-operative pain in the setting of coronary artery bypass graft surgery (CABG). An increased incidence of myocardial infarction and stroke was found through analysis of data regarding the use of a COX-2 selective NSAID for the treatment of pain in the first 10-14 days after CABG surgery. This warning is not currently applicable to products containing nonprescription strength NSAIDs (e.g., Advil Cold & Sinus Liquigels); however, the precaution has been added to some product inserts.
Ibuprofen and its metabolites are renally excreted. Accumulation of parent drug and metabolites can occur in patients with renal impairment, increasing risk of potential toxicity. Dosage adjustment may be necessary. Patients > 60 years old are more likely to have decreased renal clearance of pseudoephedrine as well as adverse reactions to sympathomimetic amines. Since pseudoephedrine is primarily eliminated by renal excretion, dosage reduction is warranted. Due to decreased elimination and potential pseudoephedrine drug accumulation, patients with renal failure may at increased risk for drug-related toxicity. Pseudoephedrine is contraindicated in patients with closed-angle glaucoma or urinary retention due to prostatic hypertrophy. It also should be avoided in patients with hyperthyroidism or diabetes mellitus because sympathomimetics can exacerbate these conditions. Ibuprofen can reduce renal blood flow due to inhibition of prostaglandin synthesis, potentially leading to overt renal decompensation. Patients with renal disease, hepatic disease, congestive heart failure, diabetes mellitus, systemic lupus erythematosus (SLE), edema, extracellular volume depletion, sepsis, those taking diuretics or nephrotoxic drugs, and those of advanced age are at greatest risk of renal decompensation. Liver dysfunction can occur during therapy with NSAIDs, resulting in jaundice and fatal hepatitis. Ibuprofen should be prescribed cautiously to patients with preexisting hepatic disease. Most NSAIDs are metabolized in the liver and accumulation can occur, increasing the risk of toxicity.
Ibuprofen should be used cautiously in patients with preexisting hematological disease (e.g., coagulopathy or hemophilia) or thrombocytopenia due to the effect of the drug on platelet function and vascular response to bleeding. Ibuprofen should also be used with caution in patients undergoing surgery when a high degree of hemostasis is required. NSAIDs should be used with caution in patients with immunosuppression or neutropenia. NSAIDs may mask the signs of infection such as fever or pain in patients with bone marrow suppression.
Intramuscular injections should be administered cautiously to patients receiving ibuprofen. Intramuscular injections may cause bleeding, bruising, or hematomas if significant platelet effects due to ibuprofen therapy occur.
Use of ibuprofen may cause increased bleeding in patients with dental disease. Patients should inform their dentist they are taking ibuprofen prior to any dental work due to a potential increased risk of bleeding. Patients should be instructed on proper oral hygiene.
The use of fixed-dose combination ibuprofen; pseudoephedrine products in children < 2 years or in infants is not recommended. However, many formulations of ibuprofen; pseudoephedrine may be administered to children > 2 years of age. The adverse effects of sympathomimetics such as pseudoephedrine can be severe, especially in infants and toddlers; CNS stimulation, increased blood pressure and tachycardia may occur. If nervousness, insomnia, or dizziness occurs, discontinue ibuprofen; pseudoephedrine use and consult a physician. Ibuprofen use has been associated with necrotizing fasciitis in children following varicella virus infection. In a retrospective, case-controlled study, children who had received ibuprofen prior to hospitalization were more likely to have complicated infections that included renal sufficiency, streptococcal toxic shock syndrome, higher temperatures and longer duration of symptoms than the control group. Although this study did not prove a causal relationship, prescribers should be aware of a potential increase risk for necrotizing fasciitis when ibuprofen is given during primary varicella infections. In January 2007, the CDC warned caregivers and healthcare providers of the risk for serious injury or fatal overdose from the administration of cough and cold products to children and infants less than 2 years of age. This warning followed an investigation of the deaths of three (3) infants less than 6 months of age that were attributed to the inadvertent inappropriate use of these products. The symptoms preceding these deaths have not been clearly defined, and there is a lack of conclusive data describing the exact cause of death. The report estimated that 1519 children less than 2 years of age were treated in emergency departments during 2004-2005 for adverse events related to cough and cold medications. In October 2007, the FDA Nonprescription Drug Advisory Committee and the Pediatric Advisory Committee recommended that nonprescription cough and cold products containing pseudoephedrine, dextromethorphan, chlorpheniramine, diphenhydramine, brompheniramine, phenylephrine, clemastine, or guaifenesin not be used in children less than 6 years of age. In January 2008, the FDA issued a Public Health Advisory recommending that OTC cough and cold products not be used in infants and children less than 2 years. An official ruling regarding the use of these products in children greater than 2 years has not yet been announced. The FDA recommends that if parents and caregivers use cough and cold products in children greater than 2 years, labels should be read carefully, caution should be used when administering multiple products, and only measuring devices specifically designed for use with medications should be used. While some combination cough/cold products containing these ingredients are available by prescription only and are not necessarily under scrutiny by the FDA, clinicians should thoroughly assess each patient's use of similar products, both prescription and nonprescription, to avoid duplication of therapy and the potential for inadvertent overdose.
In general, avoid ibuprofen; pseudoephedrine use during pregnancy. Avoid ibuprofen use during the third trimester of pregnancy (starting at 30 weeks of gestation) due to the risk of premature closure of the fetal ductus arteriosus and persistent pulmonary hypertension in the neonate. If NSAID treatment is deemed necessary between 20 to 30 weeks of pregnancy, limit use to the lowest effective dose and shortest duration possible. Consider ultrasound monitoring of amniotic fluid if NSAID treatment extends beyond 48 hours. Discontinue the NSAID if oligohydramnios occurs and follow up according to clinical practice. Use of NSAIDs around 20 weeks gestation or later in pregnancy may cause fetal renal dysfunction leading to oligohydramnios, and in some cases, neonatal renal impairment. These adverse outcomes are seen, on average, after days to weeks of treatment, although oligohydramnios has been infrequently reported as soon as 48 hours after NSAID initiation. Oligohydramnios is often, but not always, reversible with treatment discontinuation. Complications of prolonged oligohydramnios may include limb contractures and delayed lung maturation. In some postmarketing cases of impaired neonatal renal function, invasive procedures such as exchange transfusion or dialysis were required. Some sympathomimetic amines are associated with minor malformations in some animal species; however, human teratogenesis has not been suspected based on limited epidemiologic evidence. Evidence from case-control studies in human pregnancy indicates there may be an increased risk of gastroschisis, small intestinal atresia, and hemifacial microsomia in babies exposed in utero to pseudoephedrine, particularly in the first trimester. However, a single study found no increase in risk when pseudoephedrine was used alone.
Ibuprofen and pseudoephedrine products are generally considered to be compatible with breast-feeding. Ibuprofen has not been detected in the milk of lactating mothers. Pseudoephedrine is excreted into breast milk. Peak milk concentrations occur 1-1.5 hours after a maternal oral dosage, and peak milk concentrations usually exceed those of maternal plasma. The total amount of pseudoephedrine (measured by AUC) in milk is 2-3 times that of plasma. However, only 0.5% of a maternal dose of pseudoephedrine would probably be ingested by an infant during breast-feeding within any 24 hours. Sympathomimetic adverse effects (irritability, excessive crying, and altered sleeping patterns) have been reported in a breast-fed infant following maternal administration of pseudoephedrine; symptoms resolved within 12 hours of drug discontinuation. The American Academy of Pediatrics has considered the use of pseudoephedrine to be compatible with lactation. Lactating women may want to avoid breast-feeding during times of peak concentrations (i.e., within 1-2 hours after a dose) when possible.
An increased risk of NSAID-related adverse events has been noted in geriatric patients versus younger adults. The chronic use of ibuprofen can result in gastritis, ulceration with or without perforation, GI ulceration, and GI bleeding, which can occur at any time, often without preceding symptoms. Most cases of reported fatal GI events occur in the older adult population. Geriatric patients are also more prone to complications related to suboptimal renal perfusion and cardiovascular events. Patients aged more than 60 years are more sensitive to the effects of sympathomimetic amines. In general, dose selection of ibuprofen; pseudoephedrine for the geriatric patient should be cautious, starting at the low end of the adult dosing range. According to the Beers Criteria, NSAIDs are potentially inappropriate medications (PIMs) in geriatric patients. NSAIDs may cause new or worsening gastric and duodenal ulcers, and there is an increased risk of GI bleeding and peptic ulcer disease in high-risk groups including those above 75 years of age, or those taking oral or parenteral corticosteroids, anticoagulants, or antiplatelet medications. The risk of ulcers, gross bleeding, or perforation is cumulative with continued use. Avoid the chronic use of systemic NSAIDs high-risk geriatric patients, unless other alternatives are not effective, and the patient can take a gastroprotective agent. The use of a gastroprotective agent reduces but does not eliminate, GI risks. NSAIDs can also increase blood pressure and induce kidney injury. Avoid NSAIDs in geriatric patients with the following conditions due to the potential for symptom exacerbation or adverse effects: symptomatic heart failure (fluid retention, symptom exacerbation) or chronic kidney disease Stage 4 or higher (CrCl less than 30 mL/minute) (acute kidney injury, further decline of renal function). Use caution in patients with asymptomatic heart failure. The federal Omnibus Budget Reconciliation Act (OBRA) regulates medication use in residents of long-term care facilities; cough, cold, and allergy medications should be used only for a limited duration (less than 14 days) unless there is documented evidence of enduring symptoms that cannot otherwise be alleviated. Oral decongestants, such as pseudoephedrine, should be used cautiously in patients who have insomnia or hypertension.
In January 2007, the CDC warned caregivers and healthcare providers of the risk for serious injury or fatal overdose from the administration of cough and cold products to children and infants less than 2 years of age. This warning followed an investigation of the deaths of three (3) infants less than 6 months of age that were attributed to the inadvertent inappropriate use of these products. The symptoms preceding these deaths have not been clearly defined, and there is a lack of conclusive data describing the exact cause of death. The report estimated that 1519 children less than 2 years of age were treated in emergency departments during 2004-2005 for adverse events related to cough and cold medications. In October 2007, the FDA Nonprescription Drug Advisory Committee and the Pediatric Advisory Committee recommended that nonprescription cough and cold products containing pseudoephedrine, dextromethorphan, chlorpheniramine, diphenhydramine, brompheniramine, phenylephrine, clemastine, or guaifenesin not be used in children less than 6 years of age. In January 2008, the FDA issued a Public Health Advisory recommending that OTC cough and cold products not be used in infants and children less than 2 years. An official ruling regarding the use of these products in children greater than 2 years has not yet been announced. The FDA recommends that if parents and caregivers use cough and cold products in children greater than 2 years, labels should be read carefully, caution should be used when administering multiple products, and only measuring devices specifically designed for use with medications should be used. While some combination cough/cold products containing these ingredients are available by prescription only and are not necessarily under scrutiny by the FDA, clinicians should thoroughly assess each patient's use of similar products, both prescription and nonprescription, to avoid duplication of therapy and the potential for inadvertent overdose.
For the temporary relief of nasal congestion, sinus congestion, fever, sore throat, body aches (mild pain), and/or headache pain caused by allergies (hay fever), the common cold or flu, and sinusitis:
Oral dosage (tablets or capsules containing ibuprofen 200 mg and pseudoephedrine 30 mg per dose unit):
Adults: 1 tablet or capsule PO every 4 to 6 hours as needed. Initiate dosage at the lower end of the adult dosage range in geriatric patients. If symptoms do not respond to 1 capsule or tablet, 2 capsules or tablets may be used. Max: 6 tablets or capsules/day PO.
Children and Adolescents 12 years and older: 1 tablet or capsule PO every 4 to 6 hours as needed. If symptoms do not respond to 1 capsule or tablet, 2 capsules or tablets may be used. Max: 6 tablets or capsules/day PO.
Oral dosage (oral suspension containing ibuprofen 100 mg and pseudoephedrine 15 mg per 5 mL):
Children 6 to 11 years and weight 48 to 95 pounds (21.8 to 43.2 kg): 10 mL (200 mg ibuprofen and 30 mg pseudoephedrine) PO every 6 hours as needed. Do not to exceed 4 doses per 24 hours.
Children 2 to 5 years and weight 24 to 47 pounds (10.9 to 21.4 kg): 5 mL (ibuprofen 100 mg and pseudoephedrine 15 mg) PO every 6 hours as needed. Do not to exceed 4 doses per 24 hours.
Children less than 2 years or weight less than 24 pounds (less than 10.9 kg): Safety and efficacy have not been established for non-prescription use. Consult healthcare provider.
Maximum Dosage Limits:
-Adults
6 tablets/day PO.
-Geriatric
6 tablets/day PO.
-Adolescents
6 tablets/day PO.
-Children
6-11 years: 40 mL/day PO oral suspension.
2-5 years: 20 mL/day PO oral suspension.
< 2 years (< 24 lbs): Safety and efficacy have not been established.
Patients with Hepatic Impairment Dosing
Initiate at the lower end of the usual dosage range if used in patients with moderate to severe hepatic impairment. Ibuprofen is extensively metabolized in the liver and its elimination half-life is significantly prolonged in patients with moderate to severe cirrhosis.
Patients with Renal Impairment Dosing
Pseudoephedrine should be used with caution in patients with renal impairment.
Intermittent hemodialysis
See dosage adjustment for patients with renal impairment. Hemodialysis minimally removes pseudoephedrine from the circulation; no supplemental dosage is needed following dialysis.
*non-FDA-approved indication
Abciximab: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Acarbose: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Acebutolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Acetaminophen; Aspirin, ASA; Caffeine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Aspirin: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Acetaminophen; Aspirin; Diphenhydramine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Dihydrocodeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Magnesium Salicylate; Phenyltoloxamine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Phenyltoloxamine; Salicylamide: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Caffeine; Pyrilamine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Acetaminophen; Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Chlorpheniramine; Phenylephrine : (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Chlorpheniramine; Phenylephrine; Phenyltoloxamine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetaminophen; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Acetazolamide: (Moderate) Acetazolamide and methazolamide can decrease excretion and enhance the effects of pseudoephedrine. Carbonic anhydrase inhibitors increase the alkalinity of the urine, thereby increasing the amount of nonionized pseudoephedrine available for renal tubular reabsorption. Use caution if acetazolamide or methazolamide is coadministered; monitor for excessive pseudoephedrine-related adverse effects.
Acetohexamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
Aclidinium; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Acyclovir: (Moderate) Monitor patients for signs of worsening renal function during coadministration of acyclovir and nonsteroidal antiinflammatory drugs. Coadministration may increase the risk for drug-induced nephrotoxicity.
Adefovir: (Moderate) Chronic coadministration of adefovir with nephrotoxic drugs, such as nonsteroidal antiinflammatory drugs may increase the risk of developing nephrotoxicity even in patients who have normal renal function. The use of adefovir with NSAIDs may be done cautiously. As stated in the current adefovir prescribing information, 'Ibuprofen (800 mg PO three times daily), when given concomitantly with adefovir dipivoxil, increased the adefovir Cmax by 33% and AUC by 23%, as well as urinary recovery. The increase appears to be due to higher oral bioavailability, not a reduction in renal clearance of adefovir.' In an in vitro investigation, the antiviral effect of adefovir was unaltered and the renal proximal tubule accumulation of adefovir was inhibited by the presence of a NSAID. Adefovir is efficiently transported by the human renal organic anion transporter 1, and the presence of this transporter appears to mediate the accumulation of the drug in renal proximal tubules. The in vitro study suggests that the use of a NSAID with adefovir may potentially reduce the nephrotoxic potential of adefovir. Of course, NSAIDs are associated with nephrotoxicity of their own; therefore, further data on the interaction between NSAIDs and adefovir in humans are needed.
Albiglutide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Albuterol: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Aldesleukin, IL-2: (Major) Aldesleukin, IL-2 may cause nephrotoxicity. Concurrent administration of drugs possessing nephrotoxic effects, such as nonsteroidal antiinflammatory agents (NSAIDs), with Aldesleukin, IL-2 may increase the risk of kidney dysfunction. In addition, reduced kidney function secondary to Aldesleukin, IL-2 treatment may delay elimination of concomitant medications and increase the risk of adverse events from those drugs.
Aliskiren: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
Aliskiren; Amlodipine: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Aliskiren; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Aliskiren; Hydrochlorothiazide, HCTZ: (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Aliskiren; Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) NSAIDs may attenuate the antihypertensive effects of aliskiren by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of aliskiren may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking aliskiren.
Alkalinizing Agents: (Minor) Pseudoephedrine renal elimination is susceptible to changes in urinary pH. Urinary alkalinizers allow for increased tubular reabsorption of pseudoephedrine. Concomitant administration of pseudoephedrine with urinary alkalinizers may increase the likelihood of pseudoephedrine adverse reactions.
Alogliptin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alogliptin; Pioglitazone: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alpha-blockers: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by alpha-blockers. Monitor blood pressure and heart rate.
Alpha-glucosidase Inhibitors: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Alteplase: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
Altretamine: (Major) Altretamine causes mild to moderate dose-related myelosuppression. Due to the thrombocytopenic effects of altretamine, an additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Aluminum Hydroxide: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Carbonate: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Hydroxide: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Hydroxide; Simethicone: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Aluminum Hydroxide; Magnesium Trisilicate: (Minor) It appears that antacids containing aluminum hydroxide may increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If aluminum-based antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Ambenonium Chloride: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Amikacin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal antiinflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as amikacin.
Amiloride: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
Amiloride; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Aminolevulinic Acid: (Moderate) Agents that inhibit prostaglandin synthesis such as nonsteroidal antiinflammatory drugs (NSAIDs), could decrease the efficacy of photosensitizing agents used in photodynamic therapy. Avoidance of NSAIDs before and during photodynamic therapy may be advisable.
Aminosalicylate sodium, Aminosalicylic acid: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Amiodarone: (Minor) Amiodarone inhibits CYP2C9. Caution is recommended when administering amiodarone with CYP2C9 substrates including ibuprofen. The metabolism of ibuprofen may be decreased.
Amlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Atorvastatin: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Benazepril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Celecoxib: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Olmesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Amlodipine; Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Ammonium Chloride: (Minor) Pseudoephedrine renal elimination is susceptible to changes in urinary pH. Ammonium chloride, by acidifying the urine, increases the elimination of pseudoephedrine.
Amoxapine: (Major) Concomitant use of amoxapine with sympathomimetics should be avoided whenever possible; use with caution when concurrent use cannot be avoided. One drug information reference suggests that cyclic antidepressants potentiate the pharmacologic effects of direct-acting sympathomimetics, but decrease the pressor response to indirect-acting sympathomimetics, however, the data are not consistent.
Amphotericin B cholesteryl sulfate complex (ABCD): (Moderate) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
Amphotericin B lipid complex (ABLC): (Moderate) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
Amphotericin B liposomal (LAmB): (Moderate) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
Amphotericin B: (Moderate) Concurrent use of amphotericin B and other nephrotoxic medications, including nonsteroidal antiinflammatory drugs (NSAIDs), may enhance the potential for drug-induced renal toxicity. Monitor renal function carefully during concurrent therapy. Amphotericin B dosage reduction may be necessary if renal impairment occurs.
Anagrelide: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Angiotensin II receptor antagonists: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin II receptor antagonists. Monitor heart rate and blood pressure.
Angiotensin II: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Angiotensin-converting enzyme inhibitors: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Antithrombin III: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Apixaban: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Aprepitant, Fosaprepitant: (Minor) Use caution if ibuprofen and aprepitant are used concurrently and monitor for a possible decrease in the efficacy of ibuprofen. After administration, fosaprepitant is rapidly converted to aprepitant and shares the same drug interactions. Ibuprofen is a CYP2C9 substrate and aprepitant is a CYP2C9 inducer. Administration of a CYP2C9 substrate, tolbutamide, on days 1, 4, 8, and 15 with a 3-day regimen of oral aprepitant (125 mg/80 mg/80 mg) decreased the tolbutamide AUC by 23% on day 4, 28% on day 8, and 15% on day 15. The AUC of tolbutamide was decreased by 8% on day 2, 16% on day 4, 15% on day 8, and 10% on day 15 when given prior to oral administration of aprepitant 40 mg on day 1, and on days 2, 4, 8, and 15. The effects of aprepitant on tolbutamide were not considered significant. When a 3-day regimen of aprepitant (125 mg/80 mg/80 mg) given to healthy patients on stabilized chronic warfarin therapy (another CYP2C9 substrate), a 34% decrease in S-warfarin trough concentrations was noted, accompanied by a 14% decrease in the INR at five days after completion of aprepitant.
Aprotinin: (Moderate) The manufacturer recommends using aprotinin cautiously in patients that are receiving drugs that can affect renal function, such as NSAIDs, as the risk of renal impairment may be increased.
Arformoterol: (Moderate) Caution and close observation should be used when arformoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Argatroban: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Articaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Aspirin, ASA: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Aspirin, ASA; Butalbital; Caffeine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Butalbital; Caffeine; Codeine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine; Dihydrocodeine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Caffeine; Orphenadrine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Aspirin, ASA; Carisoprodol: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Aspirin, ASA; Carisoprodol; Codeine: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Aspirin, ASA; Citric Acid; Sodium Bicarbonate: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Aspirin, ASA; Dipyridamole: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure. (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Aspirin, ASA; Omeprazole: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Aspirin, ASA; Oxycodone: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Aspirin, ASA; Pravastatin: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Atenolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Atenolol; Chlorthalidone: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Atomoxetine: (Moderate) Due to the potential for increases in blood pressure and heart rate, atomoxetine should be used cautiously with drugs with sympathomimetic activity such as pseudoephedrine. Consider monitoring the patient's blood pressure and heart rate at baseline and regularly if sympathomimetics are coadministered with atomoxetine.
Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Atropine; Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine. (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Atropine; Difenoxin: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Atropine; Edrophonium: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine. (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Azathioprine: (Moderate) NSAIDs should be used with caution in patients receiving immunosuppressives as they may mask fever, pain, swelling and other signs and symptoms of an infection.
Azelastine; Fluticasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Azilsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
Azilsartan; Chlorthalidone: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Bacitracin: (Major) Avoid concurrent use of bacitracin with nonsteroidal antiinflammatory drugs. Coadministration may increase the risk for drug-induced nephrotoxicity.
Beclomethasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Belladonna Alkaloids; Ergotamine; Phenobarbital: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Benazepril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Benazepril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Bendroflumethiazide; Nadolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Benzoic Acid; Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Beta-blockers: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Betamethasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Betaxolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Bethanechol: (Moderate) Bethanechol offsets the effects of sympathomimetics at sites where sympathomimetic and cholinergic receptors have opposite effects.
Betrixaban: (Major) Monitor patients closely and promptly evaluate any signs or symptoms of bleeding if betrixaban and nonsteroidal antiinflammatory drugs (NSAIDs) are used concomitantly. Coadministration of betrixaban and NSAIDs may increase the risk of bleeding.
Bictegravir; Emtricitabine; Tenofovir Alafenamide: (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Bismuth Subsalicylate: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Bismuth Subsalicylate; Metronidazole; Tetracycline: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Bisoprolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Bisoprolol; Hydrochlorothiazide, HCTZ: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Bisphosphonates: (Moderate) Exercise caution when administering an NSAID with a bisphosphonate. Monitor for the presence of GI complaints, including potential GI ulceration and bleeding, as well as renal function, during combined use. Nonsteroidal antiinflammatory drugs (NSAIDs) are associated with esophageal and/or gastric irritation, GI ulceration. a risk of nephrotoxicity, and decreased bone mineral density. Bisphosphonates may cause GI adverse events and occasionally, renal dysfunction. Though patients receiving intravenously administered bisphosphonates have a decreased incidence of GI adverse effects as compared to those taking orally administered bisphosphonates, nephrotoxicity is possible, and GI events are rarely reported.
Bivalirudin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Bosentan: (Major) Avoid use of sympathomimetic agents with bosentan. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including bosentan. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Bretylium: (Moderate) Monitor blood pressure and heart rate closely when sympathomimetics are administered with bretylium. The pressor and arrhythmogenic effects of catecholamines are enhanced by bretylium.
Brimonidine; Timolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Bromocriptine: (Moderate) One case report documented worsening headache, hypertension, premature ventricular complexes, and ventricular tachycardia in a post-partum patient receiving bromocriptine for lactation suppression who was subsequently prescribed acetaminophen; dichloralphenazone; isometheptene for a headache. A second case involved a post-partum patient receiving bromocriptine who was later prescribed phenylpropanolamine; guaifenesin and subsequently developed hypertension, tachycardia, seizures, and cerebral vasospasm. Also, ergot alkaloids, which are chemically related to bromocriptine, should not be administered with other vasoconstrictors. Therefore, until more data become available, concurrent use of bromocriptine and some sympathomimetics such as vasopressors (e.g., norepinephrine, dopamine, phenylephrine), cocaine, epinephrine, phenylpropanolamine, ephedra, ma huang, ephedrine, pseudoephedrine, amphetamines, and phentermine should be approached with caution.
Brompheniramine; Carbetapentane; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Brompheniramine; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Brompheniramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Budesonide: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Budesonide; Formoterol: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection. (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Budesonide; Glycopyrrolate; Formoterol: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection. (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Bumetanide: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Bupivacaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Bupivacaine; Meloxicam: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Bupropion: (Major) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including non-prescription stimulants and weight loss medications, is associated with an increased seizure risk; seizures may be more likely to occur in these patients during concurrent use of bupropion. Patients should be closely monitored if these combinations are necessary.
Bupropion; Naltrexone: (Major) Bupropion is associated with a dose-related risk of seizures. Excessive use of psychostimulants, including non-prescription stimulants and weight loss medications, is associated with an increased seizure risk; seizures may be more likely to occur in these patients during concurrent use of bupropion. Patients should be closely monitored if these combinations are necessary.
Busulfan: (Major) Due to the thrombocytopenic effects of busulfan, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Butalbital; Acetaminophen; Caffeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Butalbital; Acetaminophen; Caffeine; Codeine: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Caffeine: (Moderate) Caffeine is a CNS-stimulant and such actions are expected to be additive when coadministered with other CNS stimulants or psychostimulants. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Caffeine; Sodium Benzoate: (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Calcium Carbonate: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Famotidine; Magnesium Hydroxide: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Magnesium Hydroxide: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Magnesium Hydroxide; Simethicone: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Risedronate: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Carbonate; Simethicone: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium Phosphate, Supersaturated: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Calcium; Vitamin D: (Minor) It appears that antacids increase pseudoephedrine plasma concentrations. This interaction can be avoided by separating the administration of pseudoephedrine and antacids by 1 to 2 hours. If antacids are used on a regular basis, an alternative to pseudoephedrine may be considered.
Calcium-channel blockers: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Canagliflozin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Canagliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Candesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
Candesartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Cannabidiol: (Moderate) Consider a dose reduction of ibuprofen as clinically appropriate, if adverse reactions occur when administered with cannabidiol. Increased ibuprofen exposure is possible. Ibuprofen is a CYP2C9 substrate. In vitro data predicts inhibition of CYP2C9 by cannabidiol potentially resulting in clinically significant interactions.
Capecitabine: (Moderate) Monitor for an increase in ibuprofen-related adverse reactions (e.g., fluid retention, GI irritation, renal dysfunction) if coadministration with capecitabine is necessary; adjust the dose of ibuprofen if necessasry. Ibuprofen is a CYP2C9 substrate and capecitabine is a weak CYP2C9 inhibitor.
Capreomycin: (Major) Because capreomycin is primarily eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may increase serum concentrations of either drug. Theoretically, the chronic coadministration of these drugs may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Monitor patients for changes in renal function if these drugs are coadministered.
Captopril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Captopril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Carbetapentane; Chlorpheniramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Carbetapentane; Diphenhydramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Carbetapentane; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Carbetapentane; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Carbetapentane; Phenylephrine; Pyrilamine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Carbinoxamine; Hydrocodone; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Carbinoxamine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Cardiac glycosides: (Moderate) Coadministration of digoxin and indomethacin increases the serum concentration of digoxin by 40%. Measure serum digoxin concentrations before initiating indomethacin. Reduce digoxin concentrations by decreasing the digoxin dose by approximately 15-30% or by modifying the dosing frequency and continue monitoring. In addition, concomitant use of other nonsteroidal antiinflammatory drugs (NSAIDs), including COX-2 inhibitors, with digoxin may result in increased serum concentrations of digoxin. Increased serum digoxin concentrations have been reported in patients who received digoxin and diclofenac sodium or ibuprofen. NSAIDs may cause a significant deterioration in renal function. A decline in glomerular filtration or tubular secretion may impair the excretion of digoxin. Monitor patients during concomitant treatment for possible digoxin toxicity and reduce digoxin dose as necessary.
Carmustine, BCNU: (Major) Due to the thrombocytopenic effects of carmustine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. These additive effects may not occur for at least 6 weeks after the administration of carmustine due to the delayed myelosuppressive effects of carmustine.
Carteolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Carvedilol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Cefotaxime: (Minor) Cefotaxime's product label states that cephalosporins may potentiate the adverse renal effects of nephrotoxic agents, such as aminoglycosides, nonsteroidal antiinflammatory drugs (NSAIDs), and loop diuretics. Carefully monitor renal function, especially during prolonged therapy or use of high aminoglycoside doses. The majority of reported cases involve the combination of aminoglycosides and cephalothin or cephaloridine, which are associated with dose-related nephrotoxicity as singular agents. Limited but conflicting data with other cephalosporins have been noted.
Celecoxib: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Celecoxib; Tramadol: (Major) Avoid concomitant use of celecoxib with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Chlophedianol; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorambucil: (Major) Due to the thrombocytopenic effects of chlorambucil, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Chlorothiazide: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Chlorpheniramine; Dextromethorphan; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Dihydrocodeine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Hydrocodone; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpheniramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Chlorpropamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
Chlorthalidone: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Chlorthalidone; Clonidine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of clonidine when administered concomitantly. Patients should be monitored for loss of blood pressure control.
Cholestyramine: (Minor) As with other nonsteroidal anti-inflammatory drugs (NSAIDs), the absorption of ibuprofen can be delayed if cholestyramine is concomitantly administered. Staggering the administration times may minimize this interaction.
Choline Salicylate; Magnesium Salicylate: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Cholinesterase inhibitors: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Ciclesonide: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Cidofovir: (Contraindicated) The concomitant administration of cidofovir and nonsteroidal antiinflammatory drugs (NSAIDs) is contraindicated due to the potential for increased nephrotoxicity. NSAIDs should be discontinued 7 days prior to beginning cidofovir.
Cilostazol: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Citalopram: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
Cladribine: (Major) Due to the thrombocytopenic effects of cladribine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Clevidipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Clofarabine: (Major) Due to the thrombocytopenic effects of clofarabine, an additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Clonidine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of clonidine when administered concomitantly. Patients should be monitored for loss of blood pressure control.
Clopidogrel: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Cocaine: (Major) Avoid concomitant use of additional vasoconstrictor agents with cocaine. If unavoidable, prolonged vital sign and ECG monitoring may be required. Myocardial ischemia, myocardial infarction, and ventricular arrhythmias have been reported after concomitant administration of topical intranasal cocaine and vasoconstrictor agents during nasal and sinus surgery. The risk for nervousness, irritability, convulsions, and other cardiac arrhythmias may increase during coadministration.
Codeine; Phenylephrine; Promethazine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Colchicine: (Minor) The response to sympathomimetics may be enhanced by colchicine.
Colistimethate, Colistin, Polymyxin E: (Major) The administration of colistimethate sodium may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when used concurrently. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may theoretically increase serum concentrations of either drug.
Colistin: (Major) The administration of colistimethate sodium may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when used concurrently. Monitor patients for changes in renal function if these drugs are coadministered. Since colistimethate sodium is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may theoretically increase serum concentrations of either drug.
Conjugated Estrogens; Bazedoxifene: (Moderate) In clinical evaluation, a single dose of ibuprofen 600 mg was given with a bazedoxifene 20 mg capsule in 12 postmenopausal women after an overnight fast. Co-administration increased the Cmax and AUC of bazedoxifene by 18% and 7%, respectively. The Cmax of ibuprofen increased by 6%, the AUC was unchanged. The clinical effect of this change is not known. However, co-administration of ibuprofen and conjugated estrogens; bazedoxifene may increase bazedoxifene efficacy and/or side effects. Use caution during coadministration and monitor patient closely.
Corticosteroids: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Cortisone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Cyclosporine: (Moderate) Serum creatinine, potassium concentrations, and cyclosporine concentrations should be closely monitored when systemic cyclosporine is given with nonsteroidal antiinflammatory drugs (NSAIDs). Renal dysfunction associated with cyclosporine may be potentiated by concurrent usage of NSAIDs. The effects of NSAIDs on the production of renal prostaglandins may cause changes in the elimination of cyclosporine. Potentiation of renal dysfunction may especially occur in a dehydrated patient. Patients should be monitored for signs and symptoms of cyclosporine toxicity and infection, as NSAIDs may mask fever, pain, or swelling. Increased tear production was not seen in patients receiving ophthalmic NSAIDs or using punctual plugs concurrently with cyclosporine ophthalmic emulsion.
Cytarabine, ARA-C: (Major) The main toxic effect of cytarabine, ARA-C is bone marrow suppression with leukopenia, thrombocytopenia and anemia. Due to the thrombocytopenic effects of cytarabine, an additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Dipyridamole can block membrane transport of cytarabine in tumor cells, therefore decreasing its antineoplastic activity.
Dabigatran: (Major) Educate patients about the signs of increased bleeding and the need to report these signs to a healthcare provider immediately if coadministration of dabigatran and a nonsteroidal antiinflammatory drug (NSAID) is necessary. Dabigatran can cause significant and, sometimes, fatal bleeding. This risk may be increased by concurrent use of chronic NSAID therapy.
Dacarbazine, DTIC: (Major) Leukopenia and thrombocytopenia are common toxicities of dacarbazine, DTIC. Due to the thrombocytopenic effects of dacarbazine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Dalteparin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Danaparoid: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Dapagliflozin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Dapagliflozin; Saxagliptin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Darunavir; Cobicistat; Emtricitabine; Tenofovir alafenamide: (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Dasatinib: (Major) Due to the thrombocytopenic and possible platelet inhibiting effects of dasatinib, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors (including aspirin), strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Caution should be exercised if patients are required to take medications that inhibit platelet function or anticoagulants concomitantly with dasatinib.
Deferasirox: (Moderate) Because gastric ulceration and GI bleeding have been reported in patients taking deferasirox, use caution when coadministering with other drugs known to increase the risk of peptic ulcers or gastric hemorrhage including NSAIDs. In addition, coadministration of deferasirox with other potentially nephrotoxic drugs, including NSAIDs, may increase the acute renal failure. Monitor serum creatinine and/or creatinine clearance in patients who are receiving deferasirox and nephrotoxic drugs concomitantly
Deflazacort: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Desirudin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Desmopressin: (Major) Additive hyponatremic effects may be seen in patients treated with desmopressin and drugs associated with hyponatremia including NSAIDs. Use combination with caution, and monitor patients for signs and symptoms of hyponatremia. A woman who took both desmopressin and ibuprofen was found in a comatose state. As her serum sodium concentration was 121 mmol/L, and her plasma osmolality was low in the presence of a high-normal urine osmolality and normal sodium excretion, she was treated with fluid restriction. Her serum sodium concentration was 124 mmol/L within a day and was 135 mmol/L by the second day. The woman had previously received desmopressin without the development of clinical symptoms of hyponatremia
Desvenlafaxine: (Moderate) Platelet aggregation may be impaired by desvenlafaxine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Patients should be monitored for signs and symptoms of bleeding while taking desvenlafaxine with NSAIDs.
Dexamethasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Dextromethorphan; Diphenhydramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dextromethorphan; Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Diazoxide: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Dichlorphenamide: (Moderate) Use dichlorphenamide and ibuprofen together with caution as both drugs can cause metabolic acidosis. Concurrent use may increase the severity of metabolic acidosis. Measure sodium bicarbonate concentrations at baseline and periodically during dichlorphenamide treatment. If metabolic acidosis occurs or persists, consider reducing the dose or discontinuing dichlorphenamide therapy.
Diclofenac: (Major) Avoid concomitant use of diclofenac with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Diclofenac; Misoprostol: (Major) Avoid concomitant use of diclofenac with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Diflunisal: (Major) Avoid concomitant use of diflunisal with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Dihydroergotamine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Diltiazem: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Dipeptidyl Peptidase-4 Inhibitors: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Diphenhydramine; Hydrocodone; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Diphenhydramine; Naproxen: (Major) Avoid concomitant use of ibuprofen with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Diphenhydramine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Diphenoxylate; Atropine: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Dipyridamole: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Docetaxel: (Major) Due to the thrombocytopenic effects of docetaxel, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors (including aspirin), strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Donepezil: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Donepezil; Memantine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Dopamine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Doravirine; Lamivudine; Tenofovir disoproxil fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
Dorzolamide; Timolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Doxazosin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Dronabinol: (Moderate) Concurrent use of dronabinol, THC with sympathomimetics may result in additive hypertension, tachycardia, and possibly cardiotoxicity. Dronabinol, THC has been associated with occasional hypotension, hypertension, syncope, and tachycardia. In a study of 7 adult males, combinations of IV cocaine and smoked marijuana, 1 g marijuana cigarette, 0 to 2.7% delta-9-THC, increased the heart rate above levels seen with either agent alone, with increases plateauing at 50 bpm.
Drospirenone: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
Drospirenone; Estetrol: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
Drospirenone; Estradiol: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
Drospirenone; Ethinyl Estradiol: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended.
Drospirenone; Ethinyl Estradiol; Levomefolate: (Minor) Drospirenone has antimineralocorticoid effects; the progestin may increase serum potassium. Other drugs that may have additive effects on serum potassium with drospirenone include chronic treatment with NSAIDs, and monitoring of serum potassium in the 1st month of concurrent therapy is recommended. (Minor) L-methylfolate should be used cautiously in patients taking high doses of ibuprofen. Plasma concentrations of L-methylfolate may be reduced when used concomitantly with high doses of ibuprofen. Monitor patients for decreased efficacy of L-methylfolate if these agents are used together.
Drotrecogin Alfa: (Moderate) Caution should be used when drotrecogin alfa is used with any other drugs that affect hemostasis, including NSAIDs. These patients are at increased risk of bleeding during drotrecogin alfa therapy.
Droxidopa: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Dulaglutide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Duloxetine: (Moderate) Platelet aggregation may be impaired by duloxetine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving Nonsteroidal antiinflammatory drugs (NSAIDs). Mmonitor for signs and symptoms of bleeding when duloxetine is coadministered with NSAIDs.
Dyphylline: (Moderate) Use of sympathomimetics with dyphylline should be approached with caution. Coadministration may lead to adverse effects, such as tremors, insomnia, seizures, or cardiac arrhythmias.
Dyphylline; Guaifenesin: (Moderate) Use of sympathomimetics with dyphylline should be approached with caution. Coadministration may lead to adverse effects, such as tremors, insomnia, seizures, or cardiac arrhythmias.
Edoxaban: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Edrophonium: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Efavirenz; Emtricitabine; Tenofovir: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Efavirenz; Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
Elexacaftor; tezacaftor; ivacaftor: (Minor) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as ibuprofen. In vitro studies showed ivacaftor to be a weak inhibitor of CYP2C9. Co-administration may lead to increased exposure to CYP2C9 substrates; however, the clinical impact of this has not yet been determined.
Eltrombopag: (Moderate) Eltrombopag is a UDP-glucuronyltransferase inhibitor. NSAIDs are a substrate of UDP-glucuronyltransferases. The significance or effect of this interaction is not known; however, elevated concentrations of the NSAID are possible. Monitor patients for adverse reactions if eltrombopag is administered with an NSAID.
Elvitegravir: (Moderate) The plasma concentrations of ibuprofen may be decreased when administered concurrently with elvitegravir. Patients may experience decreased analgesic or anti-inflammatory effects when these drugs are coadministered. Elvitegravir is a CYP2C9 inducer, while ibuprofen is a CYP2C9 substrate.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Alafenamide: (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs. (Moderate) The plasma concentrations of ibuprofen may be decreased when administered concurrently with elvitegravir. Patients may experience decreased analgesic or anti-inflammatory effects when these drugs are coadministered. Elvitegravir is a CYP2C9 inducer, while ibuprofen is a CYP2C9 substrate.
Elvitegravir; Cobicistat; Emtricitabine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs. (Moderate) The plasma concentrations of ibuprofen may be decreased when administered concurrently with elvitegravir. Patients may experience decreased analgesic or anti-inflammatory effects when these drugs are coadministered. Elvitegravir is a CYP2C9 inducer, while ibuprofen is a CYP2C9 substrate.
Empagliflozin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Linagliptin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Empagliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Emtricitabine: (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Emtricitabine; Rilpivirine; Tenofovir alafenamide: (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Emtricitabine; Rilpivirine; Tenofovir disoproxil fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Emtricitabine; Tenofovir alafenamide: (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Emtricitabine; Tenofovir disoproxil fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment. (Moderate) Monitor for changes in serum creatinine and adverse reactions, such as lactic acidosis or hepatotoxicity if emtricitabine is administered in combination with nephrotoxic agents, such as high-dose nonsteroidal antiinflammatory drugs (NSAIDs). Consider the potential for drug interaction prior to and during concurrent use of these medications. Both emtricitabine and NSAIDs are excreted via the kidneys by a combination of glomerular filtration and active tubular secretion. While no drug interactions due to competition for renal excretion have been observed, coadministration of these medications may increase concentrations of both drugs.
Enalapril, Enalaprilat: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Enalapril; Felodipine: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Enalapril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Enoxaparin: (Major) Whenever possible, discontinue agents which may enhance the risk of hemorrhage, including nonsteroidal antiinflammatory drugs, before initiation of enoxaparin therapy. If coadministration is essential, conduct close clinical and laboratory monitoring.
Entecavir: (Moderate) The manufacturer of entecavir recommends monitoring for adverse effects when coadministered with NSAIDs. Entecavir is primarily eliminated by the kidneys; NSAIDs can affect renal function. Concurrent administration may increase the serum concentrations of entecavir and adverse events.
Ephedrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Ephedrine; Guaifenesin: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Eplerenone: (Major) Monitor serum potassium and serum creatinine concentrations within 3 to 7 days of initiating coadministration of eplerenone and nonsteroidal antiinflammatory drugs (NSAIDs), and monitor blood pressure. The concomitant use of other potassium-sparing antihypertensives with NSAIDs has been shown to reduce the antihypertensive effect in some patients and result in severe hyperkalemia in patients with impaired renal function. Patients who develop hyperkalemia may continue eplerenone with proper dose adjustment; eplerenone dose reduction decreases potassium concentrations.
Epoprostenol: (Major) Avoid use of sympathomimetic agents with epoprostenol. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including epoprostenol. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications. (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
Eprosartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
Eprosartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Eptifibatide: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Ergoloid Mesylates: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergonovine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergot alkaloids: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergotamine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Ergotamine; Caffeine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics. (Moderate) CNS-stimulating actions of caffeine can be additive with other CNS stimulants or psychostimulants; caffeine should be avoided or used cautiously. Excessive caffeine ingestion (via medicines, supplements or beverages including coffee, green tea, other teas, guarana, colas) may contribute to side effects like nervousness, irritability, insomnia, or tremor.
Erlotinib: (Moderate) Monitor for symptoms of gastrointestinal (GI) perforation (e.g., severe abdominal pain, fever, nausea, and vomiting) if coadministration of erlotinib with nonsteroidal antiinflammatory drugs (NSAIDs) is necessary. Permanently discontinue erlotinib in patients who develop GI perforation. The pooled incidence of GI perforation clinical trials of erlotinib ranged from 0.1% to 0.4%, including fatal cases. Patients receiving concomitant NSAIDs may be at increased risk of perforation.
Ertugliflozin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Ertugliflozin; Sitagliptin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Escitalopram: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
Esmolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Ethacrynic Acid: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Ethanol: (Major) Advise patients to avoid alcohol and alcohol-containing products while taking NSAIDs. Concomitant ingestion of alcohol with NSAIDs increases the risk of developing gastric irritation and GI mucosal bleeding. Alcohol is a mucosal irritant and NSAIDs decrease platelet aggregation. Routine ingestion of alcohol and NSAIDs can cause significant GI bleeding, which may or may not be overt. Even occasional concomitant use of NSAIDs and alcohol should be avoided. Chronic alcohol ingestion is often associated with hypoprothrombinemia and this condition increases the risk of bleeding.
Ethinyl Estradiol; Levonorgestrel; Folic Acid; Levomefolate: (Minor) L-methylfolate should be used cautiously in patients taking high doses of ibuprofen. Plasma concentrations of L-methylfolate may be reduced when used concomitantly with high doses of ibuprofen. Monitor patients for decreased efficacy of L-methylfolate if these agents are used together.
Ethiodized Oil: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Etodolac: (Major) Avoid concomitant use of etodolac with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Exenatide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Felodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Fenofibric Acid: (Minor) At therapeutic concentrations, fenofibric acid is a mild-to-moderate inhibitor of CYP2C9. Concomitant use of fenofibric acid with CYP2C9 substrates, such as ibuprofen, has not been formally studied. Fenofibric acid may theoretically increase plasma concentrations of CYP2C9 substrates and could lead to toxicity for drugs that have a narrow therapeutic range. Monitor the therapeutic effect of ibuprofen during coadministration with fenofibric acid.
Fenoldopam: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Fenoprofen: (Major) Avoid concomitant use of fenoprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Flavocoxid, Flavocoxid; Citrated Zinc Bisglycinate: (Major) Flavocoxid exerts similar pharmacologic characteristics to other systemic NSAIDs. Additive pharmacodynamic effects, including a potential for additive adverse cardiac and GI effects, may be seen if flavocoxid is used with NSAIDs. In general, the concurrent use of flavocoxid and NSAIDs should be avoided.
Floxuridine: (Major) Due to the thrombocytopenic effects of floxuridine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Fluconazole: (Moderate) Fluconazole is an inhibitor of cytochrome P450 isoenzyme 2C9, which is the isoenzyme responsible for the metabolism of ibuprofen. Thus, increased plasma concentrations of ibuprofen are possible. If fluconazole is administered concurrently with ibuprofen, monitor for NSAID-related side-effects such as fluid retention, GI irritation, or renal dysfunction and adjust the ibuprofen dose, if needed. Among 12 healthy males, the mean systemic exposure of S-(+)-ibuprofen after a single dose of 400 mg of racemic ibuprofen was 67.4 +/- 16.2 mcghr/ml. In contrast, the mean systemic exposure was 122 +/- 32 mcghr/ml when ibuprofen was given 1 hour after the second fluconazole dose; fluconazole 400 mg was given on day 1 and 200 mg was given on day 2. In addition to increased systemic exposure, the maximum concentration and half-life of S-(+)-ibuprofen were all statistically significantly greater in the presence of fluconazole. Increased S-(+)-ibuprofen concentrations leads to increased inhibition of both COX-1 and COX-2, and impaired ibuprofen metabolism due to mutations in the CYP2C9 gene increases the risk of acute gastrointestinal bleeding.
Fludrocortisone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Flunisolide: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Fluorouracil, 5-FU: (Major) Due to the thrombocytopenic effects of fluorouracil, 5-FU, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Fluoxetine: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
Flurbiprofen: (Major) Avoid concomitant use of flurbiprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Fluticasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Fluticasone; Salmeterol: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection. (Moderate) Caution and close observation should also be used when salmeterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Fluticasone; Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects. (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Fluticasone; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects. (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Fluvoxamine: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
Fondaparinux: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Formoterol; Mometasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection. (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Foscarnet: (Minor) The risk of renal toxicity may be increased if foscarnet is used in conjuction with other nephrotoxic agents, such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor renal function carefully during concurrent therapy.
Fosinopril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Fosinopril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Furosemide: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Galantamine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Ganciclovir: (Minor) Concurrent use of nephrotoxic agents, such as NSAIDs, with ganciclovir should be done cautiously to avoid additive nephrotoxicity. Monitor renal function carefully if concomitant therapy is required.
Garlic, Allium sativum: (Minor) Garlic, Allium sativum may produce clinically-significant antiplatelet effects; until more data are available, garlic should be used cautiously in patients receiving drugs with a known potential risk for bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs).
Gentamicin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as gentamicin.
Ginger, Zingiber officinale: (Minor) In vitro studies have demonstrated the positive inotropic effects of certain gingerol constituents of ginger; but it is unclear if whole ginger root exhibits these effects clinically in humans. It is theoretically possible that excessive doses of ginger could affect the action of vasopressors like pseudoephedrine; however, no clinical data are available. (Minor) Patients receiving regular therapy with nonsteroidal antiinflammatory drugs (NSAIDs) should use ginger with caution, due to a theoretical risk of bleeding resulting from additive pharmacology related to the COX enzymes. However, clinical documentation of interactions is lacking. Several pungent constituents of ginger (Zingiber officinale) are reported to inhibit arachidonic acid (AA) induced platelet activation in human whole blood. The constituent (8)-paradol is the most potent inhibitor of COX-1 and exhibits the greatest anti-platelet activity versus other gingerol analogues. The mechanism of ginger-associated platelet inhibition may be related to decreased COX-1/Thomboxane synthase enzymatic activity.
Ginkgo, Ginkgo biloba: (Moderate) Monitor for signs or symptoms of bleeding with coadministration of ginkgo biloba and NSAIDs as an increased bleeding risk may occur. Although data are mixed, ginkgo biloba is reported to inhibit platelet aggregation and several case reports describe bleeding complications with ginkgo biloba, with or without concomitant drug therapy.
Glimepiride: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
Glimepiride; Rosiglitazone: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations. (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glipizide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
Glipizide; Metformin: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations. (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glyburide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
Glyburide; Metformin: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations. (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Glycopyrrolate; Formoterol: (Moderate) Caution and close observation should be used when formoterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Gold: (Moderate) Due to the inhibition of renal prostaglandins by NSAIDs, concurrent use with other nephrotoxic agents, such as gold compounds, may lead to additive nephrotoxicity. Monitor renal function carefully during concurrent therapy.
Green Tea: (Moderate) Some, but not all, green tea products contain caffeine. Caffeine should be avoided or used cautiously with pseudoephedrine. CNS stimulants and sympathomimetics are associated with adverse effects such as nervousness, irritability, insomnia, and cardiac arrhythmias.
Guaifenesin; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Guanabenz: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways. (Moderate) Sympathomimetics can antagonize the antihypertensive effects of guanabenz when administered concomitantly. Patients should be monitored for loss of blood pressure control.
Guanfacine: (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
Halogenated Anesthetics: (Major) Avoid administration of pseudoephedrine products to patients who have recently undergone, or will soon undergo, a procedure or treatment that requires general anesthesia. Specifically, halogenated anesthetics may sensitize the myocardium to the effects of sympathomimetics, including pseudoephedrine.
Haloperidol: (Moderate) Non-cardiovascular drugs with alpha-blocking activity such as haloperidol directly counteract the effects of pseudoephedrine and can counter the desired pharmacologic effect. They also can be used to treat excessive pseudoephedrine-induced hypertension.
Heparin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Hyaluronidase, Recombinant; Immune Globulin: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function.
Hydralazine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Hydralazine; Hydrochlorothiazide, HCTZ: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Hydralazine; Isosorbide Dinitrate, ISDN: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Hydrochlorothiazide, HCTZ: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Hydrochlorothiazide, HCTZ; Methyldopa: (Major) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of methyldopa when administered concomitantly. Blood pressure should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Hydrochlorothiazide, HCTZ; Moexipril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Hydrocodone; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Hydrocortisone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Hyoscyamine; Methenamine; Methylene Blue; Phenyl Salicylate; Sodium Biphosphate: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Ibritumomab Tiuxetan: (Major) During and after therapy, avoid the concomitant use of Yttrium (Y)-90 ibrutumomab tiuxetan with drugs that interfere with platelet function such as nonsteroidal antiinflammatory drugs (NSAIDs); the risk of bleeding may be increased. If coadministration with NSAIDs is necessary, monitor platelet counts more frequently for evidence of thrombocytopenia.
Ibuprofen lysine: (Major) Because ibuprofen lysine exerts similar pharmacologic characteristics to other systemic NSAIDs, including COX-2 inhibitors, additive pharmacodynamic effects, including a potential increase for additive adverse GI effects, may be seen if ibuprofen lysine is used with other NSAIDs. In general, concurrent use of ibuprofen lysine and another NSAID should be avoided.
Iloprost: (Major) Avoid use of sympathomimetic agents with iloprost. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including iloprost. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications. (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Immune Globulin IV, IVIG, IGIV: (Moderate) Immune Globulin (IG) products have been reported to be associated with renal dysfunction, acute renal failure, osmotic nephrosis, and death. Patients predisposed to acute renal failure include patients receiving known nephrotoxic drugs like nonsteroidal anti-inflammatory drugs (NSAIDs) and salicylates. Coadminister IG products at the minimum concentration available and the minimum rate of infusion practicable. Also, closely monitor renal function.
Incretin Mimetics: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Indacaterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as indacaterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Indacaterol; Glycopyrrolate: (Moderate) Administer sympathomimetics with caution with beta-agonists such as indacaterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Indapamide: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. (Moderate) Sympathomimetics can antagonize the antihypertensive effects of vasodilators when administered concomitantly. Patients should be monitored to confirm that the desired antihypertensive effect is achieved.
Indomethacin: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Inotersen: (Moderate) Use caution with concomitant use of inotersen and nonsteroidal antiinflammatory drugs (NSAIDs) due to the risk of glomerulonephritis and nephrotoxicity as well as the potential risk of bleeding from thrombocytopenia. Consider discontinuation of NSAIDs in a patient taking inotersen with a platelet count of less than 50,000 per microliter.
Insulin Degludec; Liraglutide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Insulin Glargine; Lixisenatide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Insulins: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Iobenguane I 131: (Major) Discontinue sympathomimetics for at least 5 half-lives before the administration of the dosimetry dose or a therapeutic dose of iobenguane I-131. Do not restart sympathomimetics until at least 7 days after each iobenguane I-131 dose. Drugs that reduce catecholamine uptake or deplete catecholamine stores, such as sympathomimetics, may interfere with iobenguane I-131 uptake into cells and interfere with dosimetry calculations resulting in altered iobenguane I-131 efficacy.
Iodipamide Meglumine: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Iodixanol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Iohexol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Ionic Contrast Media: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Iopamidol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Iopromide: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Ioversol: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Ioxaglate Meglumine; Ioxaglate Sodium: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Ipratropium; Albuterol: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Irbesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
Irbesartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Isocarboxazid: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Isosulfan Blue: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Isradipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Ivacaftor: (Minor) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as ibuprofen. In vitro studies showed ivacaftor to be a weak inhibitor of CYP2C9. Co-administration may lead to increased exposure to CYP2C9 substrates; however, the clinical impact of this has not yet been determined.
Kanamycin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as kanamycin.
Ketamine: (Moderate) Closely monitor vital signs when ketamine and pseudoephedrine are coadministered; consider dose adjustment individualized to the patient's clinical situation. Pseudoephedrine may enhance the sympathomimetic effects of ketamine.
Ketoprofen: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Ketorolac: (Contraindicated) Concomitant use of ketorolac with another NSAID is contraindicated. Increased adverse gastrointestinal effects are possible if ketorolac is used with other systemic nonsteroidal antiinflammatory drugs (NSAIDs).
Labetalol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Lamivudine; Tenofovir Disoproxil Fumarate: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
Lansoprazole; Naproxen: (Major) Avoid concomitant use of ibuprofen with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Leflunomide: (Moderate) In vitro studies indicate that the M1 metabolite of leflunomide inhibits cytochrome P450 2C9, the enzyme responsible for the metabolism of many NSAIDs. Leflunomide altered protein binding and thus, increased the free fraction of ibuprofen by 13% to 50%. The clinical significance of the interactions with NSAIDs is unknown. There was extensive concomitant use of NSAIDs in phase III clinical studies of leflunomide in the treatment of rheumatoid arthritis, and no clinical differential effects were observed. However, because some NSAIDs have been reported to cause hepatotoxic effects, some caution may be warranted in their use with leflunomide.
Lepirudin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Levalbuterol: (Moderate) Caution and close observation should be used when albuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Levamlodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Levobetaxolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Levobunolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Levomefolate: (Minor) L-methylfolate should be used cautiously in patients taking high doses of ibuprofen. Plasma concentrations of L-methylfolate may be reduced when used concomitantly with high doses of ibuprofen. Monitor patients for decreased efficacy of L-methylfolate if these agents are used together.
Levomilnacipran: (Moderate) Platelet aggregation may be impaired by SNRIs such as levomilnacipran due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Monitor for signs and symptoms of bleeding in patients taking levomilnacipran and NSAIDs.
Levothyroxine: (Moderate) Sympathomimetic amines should be used with caution in patients with thyrotoxicosis since these patients are unusually responsive to sympathomimetic amines. Based on the cardiovascular stimulatory effects of sympathomimetic drugs, the concomitant use of sympathomimetics and thyroid hormones can enhance the effects on the cardiovascular system. Patients with coronary artery disease have an increased risk of coronary insufficiency from either agent. Concomitant use of these agents may increase this risk further. In addition, dopamine at a dose of >= 1 mcg/kg/min and dopamine agonists (e.g., apomorphine, bromocriptine, levodopa, pergolide, pramipexole, ropinirole, rotigotine) may result in a transient reduction in TSH secretion. The reduction in TSH secretion is not sustained; hypothyroidism does not occur.
Levothyroxine; Liothyronine (Porcine): (Moderate) Sympathomimetic amines should be used with caution in patients with thyrotoxicosis since these patients are unusually responsive to sympathomimetic amines. Based on the cardiovascular stimulatory effects of sympathomimetic drugs, the concomitant use of sympathomimetics and thyroid hormones can enhance the effects on the cardiovascular system. Patients with coronary artery disease have an increased risk of coronary insufficiency from either agent. Concomitant use of these agents may increase this risk further. In addition, dopamine at a dose of >= 1 mcg/kg/min and dopamine agonists (e.g., apomorphine, bromocriptine, levodopa, pergolide, pramipexole, ropinirole, rotigotine) may result in a transient reduction in TSH secretion. The reduction in TSH secretion is not sustained; hypothyroidism does not occur.
Levothyroxine; Liothyronine (Synthetic): (Moderate) Sympathomimetic amines should be used with caution in patients with thyrotoxicosis since these patients are unusually responsive to sympathomimetic amines. Based on the cardiovascular stimulatory effects of sympathomimetic drugs, the concomitant use of sympathomimetics and thyroid hormones can enhance the effects on the cardiovascular system. Patients with coronary artery disease have an increased risk of coronary insufficiency from either agent. Concomitant use of these agents may increase this risk further. In addition, dopamine at a dose of >= 1 mcg/kg/min and dopamine agonists (e.g., apomorphine, bromocriptine, levodopa, pergolide, pramipexole, ropinirole, rotigotine) may result in a transient reduction in TSH secretion. The reduction in TSH secretion is not sustained; hypothyroidism does not occur.
Lidocaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Linagliptin; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Linezolid: (Moderate) Linezolid may enhance the hypertensive effect of pseudoephedrine. Closely monitor for increased blood pressure during coadministration. Linezolid is an antibiotic that is also a weak, reversible nonselective inhibitor of monoamine oxidase (MAO). Therefore, linezolid has the potential for interaction with adrenergic agents, such as pseudoephedrine.
Liothyronine: (Moderate) Sympathomimetic amines should be used with caution in patients with thyrotoxicosis since these patients are unusually responsive to sympathomimetic amines. Based on the cardiovascular stimulatory effects of sympathomimetic drugs, the concomitant use of sympathomimetics and thyroid hormones can enhance the effects on the cardiovascular system. Patients with coronary artery disease have an increased risk of coronary insufficiency from either agent. Concomitant use of these agents may increase this risk further. In addition, dopamine at a dose of >= 1 mcg/kg/min and dopamine agonists (e.g., apomorphine, bromocriptine, levodopa, pergolide, pramipexole, ropinirole, rotigotine) may result in a transient reduction in TSH secretion. The reduction in TSH secretion is not sustained; hypothyroidism does not occur.
Liraglutide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lisinopril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Lisinopril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Lithium: (Moderate) Lithium levels should be monitored when patients initiate or discontinue nonsteroidal antiinflammatory drugs. In some cases, lithium toxicity has resulted from interactions between an NSAID and lithium. Indomethacin and piroxicam have been reported to significantly increase steady-state plasma lithium concentrations. There is also evidence that other NSAIDs, including the selective cyclooxygenase-2 (COX-2) inhibitors, have the same effect. In a study conducted in healthy subjects, mean steady-state lithium plasma levels increased approximately 17% in subjects receiving lithium 450 twice daily with celecoxib 200 mg twice daily as compared to subjects receiving lithium alone. It is thought that prostaglandins are involved in the renal clearance of lithium and that NSAIDs interfere with lithium excretion. Typically, increased lithium levels develop over 5 to 10 days after adding a NSAID and return to pretreatment levels within 7 days of stopping the NSAID.
Lixisenatide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Lomustine, CCNU: (Major) Due to the bone marrow suppressive and thrombocytopenic effects of lomustine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Loop diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Losartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
Losartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Lumacaftor; Ivacaftor: (Minor) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as ibuprofen. In vitro studies showed ivacaftor to be a weak inhibitor of CYP2C9. Co-administration may lead to increased exposure to CYP2C9 substrates; however, the clinical impact of this has not yet been determined. (Minor) Lumacaftor; ivacaftor may alter the systemic exposure of ibuprofen. If used together, a dose adjustment of ibuprofen may be required to obtain the desired therapeutic effect and/or avoid adverse effects. Do not exceed the recommended maximum dose. Ibuprofen is a CYP2C9 substrate, and in vitro studies suggest that lumacaftor; ivacaftor has the potential to induce or inhibit CYP2C9.
Lumacaftor; Ivacaftor: (Minor) Lumacaftor; ivacaftor may alter the systemic exposure of ibuprofen. If used together, a dose adjustment of ibuprofen may be required to obtain the desired therapeutic effect and/or avoid adverse effects. Do not exceed the recommended maximum dose. Ibuprofen is a CYP2C9 substrate, and in vitro studies suggest that lumacaftor; ivacaftor has the potential to induce or inhibit CYP2C9.
Macimorelin: (Major) Avoid use of macimorelin with drugs that directly affect pituitary growth hormone secretion, such as nonsteroidal antiinflammatory drugs (NSAIDs). Healthcare providers are advised to discontinue NSAID therapy and observe a sufficient washout period before administering macimorelin. Use of these medications together may impact the accuracy of the macimorelin growth hormone test.
Macitentan: (Major) Avoid use of sympathomimetic agents with macitentan. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including macitentan. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Magnesium Salicylate: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Magnesium Salts: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
Magnesium Sulfate; Potassium Sulfate; Sodium Sulfate: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
Mannitol: (Major) Avoid use of mannitol and nonsteroidal anti-inflammatory drugs (NSAIDs), if possible. If use together is necessary, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Concomitant administration of nephrotoxic drugs, such as NSAIDs, increases the risk of renal failure after administration of mannitol. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain.
Maprotiline: (Moderate) Use maprotiline and sympathomimetics together with caution and close clinical monitoring. Regularly assess blood pressure, heart rate, the efficacy of treatment, and the emergence of sympathomimetic/adrenergic adverse events. Carefully adjust dosages as clinically indicated. Maprotiline has pharmacologic activity similar to tricyclic antidepressant agents and may cause additive sympathomimetic effects when combined with agents with adrenergic/sympathomimetic activity.
Mecamylamine: (Major) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by mecamylamine. Close monitoring of blood pressure or the selection of alternative therapeutic agents may be needed. (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Mechlorethamine, Nitrogen Mustard: (Major) Mechlorethamine, nitrogen mustard is highly toxic and is associated with lymphocytopenia, granulocytopenia, and thrombocytopenia. Due to the thrombocytopenic effects of mechlorethamine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Meclofenamate Sodium: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Mefenamic Acid: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Meglitinides: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Meloxicam: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Mesalamine, 5-ASA: (Minor) The concurrent use of mesalamine with known nephrotoxic agents such as nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of nephrotoxicity.
Metaproterenol: (Major) Caution and close observation should also be used when metaproterenol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Repaglinide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Rosiglitazone: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Saxagliptin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Metformin; Sitagliptin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Methazolamide: (Moderate) Methazolamide can decrease the urinary excretion and enhance the clinical effects of pseudoephedrine. Use caution if methazolamide is coadministered; monitor for excessive pseudoephedrine-related adverse effects.
Methenamine; Sodium Salicylate: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Methotrexate: (Major) Do not administer nonsteroidal anti-inflammatory drugs (NSAIDs) before or concomitantly with high doses of methotrexate, such as used in the treatment of osteosarcoma. Concomitant administration of some NSAIDs with high dose methotrexate therapy has been reported to elevate and prolong serum methotrexate concentrations, resulting in deaths from severe hematologic and gastrointestinal toxicity. Use caution when NSAIDs are administered concomitantly with lower doses of methotrexate as they have been reported to reduce the tubular secretion of methotrexate in an animal model and may enhance its toxicity. Despite potential interactions, patients with rheumatoid arthritis (RA) are often receiving concurrent treatment with NSAIDs without apparent problems. However, these doses are lower than those used in psoriasis or malignancy; higher methotrexate doses may lead to unexpected toxicity in combination with NSAIDs. NSAIDs may be continued in patients with RA receiving treatment with methotrexate, although the possibility of increased toxicity has not been fully explored.
Methoxsalen: (Major) Preclinical data suggest agents that inhibit prostaglandin synthesis such as ibuprofen could decrease the efficacy of photosensitizing agents used in photodynamic therapy. Avoidance of ibuprofen before and during photodynamic therapy may be advisable.
Methyclothiazide: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Methyldopa: (Major) Sympathomimetics, such as pseudoephedrine, can antagonize the antihypertensive effects of methyldopa when administered concomitantly. Blood pressure should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Methylergonovine: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Methylprednisolone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Methylsulfonylmethane, MSM: (Moderate) Patients taking methylsulfonylmethane, MSM have reported increased bruising or blood in the stool. These effects have not been confirmed in published medical literature or during clinical studies. Use methylsulfonylmethane, MSM with caution in patients who are taking drugs with the potential for additive bleeding, including nonsteroidal antiinflammatory drugs (NSAIDs). During an available, published clinical trials in patients with osteoarthritis, patients with bleeding disorders or using anticoagulants or platelet inhibiting drugs were excluded from enrollment. Patients who choose to consume methylsulfonylmethane, MSM while receiving NSAIDs should be observed for potential bleeding.
Methysergide: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Metolazone: (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Metoprolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Metoprolol; Hydrochlorothiazide, HCTZ: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Midodrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Mifepristone: (Moderate) Mifepristone significantly increased exposure of drugs metabolized by CYP2C8/2C9 in interaction studies. Therefore, when mifepristone is used chronically, as in the treatment of Cushing's syndrome, use caution with coadministered CYP2C8/2C9 substrates, including the NSAIDs. Use the lowest doses of the substrate and patients should be monitored closely for adverse reactions.
Miglitol: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Milnacipran: (Moderate) Platelet aggregation may be impaired by milnacipran due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Monitor for signs and symptoms of bleeding in patients taking milnacipran and NSAIDs.
Minoxidil: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Mitoxantrone: (Major) Due to the thrombocytopenic effects of mitoxantrone, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Moexipril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Mometasone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Monoamine oxidase inhibitors: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Nabilone: (Moderate) Concurrent use of nabilone with sympathomimetics (e.g., amphetamine or cocaine) may result in additive hypertension, tachycardia, and possibly cardiotoxicity. In a study of 7 adult males, combinations of cocaine (IV) and smoked marijuana (1 g marijuana cigarette, 0 to 2.7% delta-9-THC) increased the heart rate above levels seen with either agent alone, with increases reaching a plateau at 50 bpm.
Nabumetone: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Nadolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Naproxen: (Major) Avoid concomitant use of ibuprofen with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Naproxen; Esomeprazole: (Major) Avoid concomitant use of ibuprofen with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Naproxen; Pseudoephedrine: (Major) Avoid concomitant use of ibuprofen with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Nebivolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Nebivolol; Valsartan: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Nelarabine: (Major) Due to the thrombocytopenic effects of nelarabine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Neomycin: (Minor) It is possible that additive nephrotoxicity may occur in patients who receive NSAIDs concurrently with other nephrotoxic agents, such as aminoglycosides.
Neostigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Nicardipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nicotine: (Minor) Vasoconstricting nasal decongestants such as oxymetazoline, phenylephrine, pseudoephedrine, and tetrahydrozoline prolong the time to peak effect of nasally administered nicotine (i.e. nicotine nasal spray); however, no dosage adjustments are recommended.
Nifedipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nimodipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nisoldipine: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Nitrates: (Moderate) Sympathomimetics can antagonize the antianginal effects of nitrates, and can increase blood pressure and/or heart rate. Anginal pain may be induced when coronary insufficiency is present.
Nitroprusside: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Non-Ionic Contrast Media: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when given to patients receiving a contrast agents. When possible, withhold NSAID therapy during administration of a contrast agent.
Norepinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Olanzapine; Fluoxetine: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
Olmesartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
Olmesartan; Amlodipine; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Olmesartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Omacetaxine: (Major) Avoid the concomitant use of omacetaxine and nonsteroidal antiinflammatory drugs (NSAIDs) when the platelet count is less than 50,000 cells/microliter due to an increased risk of bleeding.
Oritavancin: (Moderate) Ibuprofen is metabolized by CYP2C9; oritavancin is a weak CYP2C9 inhibitor. Coadministration may result in elevated ibuprofen plasma concentrations. If these drugs are administered concurrently, monitor patients for NSAID-induced toxicity, such as nausea, GI bleeding, or renal dysfunction.
Oxaprozin: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Ozanimod: (Major) Coadministration of ozanimod with sympathomimetics such as pseudoephedrine is not routinely recommended due to the potential for hypertensive crisis. If coadministration is medically necessary, closely monitor the patient for hypertension. An active metabolite of ozanimod inhibits MAO-B, which may increase the potential for hypertensive crisis. Sympathomimetics may increase blood pressure by increasing norepinephrine concentrations and monoamine oxidase inhibitors (MAOIs) are known to potentiate these effects. Concomitant use of ozanimod with pseudoephedrine did not potentiate the effects on blood pressure. However, hypertensive crisis has occurred with administration of ozanimod alone and also during coadministration of sympathomimetic medications and other selective or nonselective MAO inhibitors.
Paclitaxel: (Major) Due to the thrombocytopenic effects of paclitaxel, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Paroxetine: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
Pemetrexed: (Major) Avoid administration of ibuprofen for 2 days before, the day of, and 2 days after administration of pemetrexed in patients with a creatinine clearance (CrCL) between 45 mL/min and 79 mL/min. If concomitant use is unavoidable, monitor these patients more frequently for myelosuppression, renal, and gastrointestinal toxicity. Pemetrexed is an OAT3 substrate and ibuprofen is an OAT3 inhibitor. Concomitant use inhibited the uptake of pemetrexed in OAT3-expressing cell cultures with an average [Iu]/IC50 ratio of 0.38, resulting in increased pemetrexed exposure. In vitro data predict that other NSAIDs would not inhibit the uptake of pemetrexed by OAT3, and thus would not increase the AUC of pemetrexed to a clinically significant extent. In patients with normal renal function (CrCL greaster than 80 mL/min), ibuprofen increased the AUC of pemetrexed by approximately 20%.
Penbutolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Pentamidine: (Major) Avoid concurrent or sequential use of pentamidine with ibuprofen. Coadministration may increase the risk for drug-induced nephrotoxicity. Closely monitor renal function if coadministration is unavoidable.
Pentosan: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Pentostatin: (Major) Due to the thrombocytopenic effects of pentostatin, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Pergolide: (Contraindicated) Ergot alkaloids should not be administered with pseudoephedrine since combining these agents may produce a synergistic increase in blood pressure. There is also an additive risk of peripheral ischemia or gangrene. Of note, at therapeutic doses, ergoloid mesylates lack the vasoconstrictor properties of the natural ergot alkaloids; therefore, ergoloid mesylates are not expected to interact with sympathomimetics.
Perindopril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Perindopril; Amlodipine: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Pexidartinib: (Moderate) Monitor for evidence of hepatotoxicity if pexidartinib is coadministered with ibuprofen. Avoid concurrent use in patients with increased serum transaminases, total bilirubin, or direct bilirubin (more than ULN) or active liver or biliary tract disease.
Phenelzine: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Phenobarbital; Hyoscyamine; Atropine; Scopolamine: (Major) Atropine blocks the vagal reflex bradycardia caused by pseudoephedrine, and increases its pressor effect. Patients need to be asked whether they have taken pseudoephedrine before receiving atropine.
Phenoxybenzamine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Phentermine; Topiramate: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Phentolamine: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Photosensitizing agents (topical): (Moderate) Agents that inhibit prostaglandin synthesis such as nonsteroidal antiinflammatory drugs (NSAIDs), could decrease the efficacy of photosensitizing agents used in photodynamic therapy. Avoidance of NSAIDs before and during photodynamic therapy may be advisable.
Physostigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Pindolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Pioglitazone: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Glimepiride: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations. (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pioglitazone; Metformin: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Pirbuterol: (Moderate) Caution and close observation should also be used when pirbuterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Piroxicam: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Platelet Inhibitors: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Pneumococcal Vaccine, Polyvalent: (Moderate) Concomitant administration of antipyretics, such as nonsteroidal antiinflammatory drugs (NSAIDS), may decrease an individual's immunological response to the pneumococcal vaccine. A post-marketing study conducted in Poland using a non-US vaccination schedule (2, 3, 4, and 12 months of age) evaluated the impact of prophylactic oral acetaminophen on antibody responses to Prevnar 13. Data show that acetaminophen, given at the time of vaccination and then dosed at 6 to 8 hour intervals for 3 doses on a scheduled basis, reduced the antibody response to some serotypes after the third dose of Prevnar 13 when compared to the antibody responses of infants who only received antipyretics 'as needed' for treatment. However, reduced antibody responses were not observed after the fourth dose of Prevnar 13 with prophylactic acetaminophen.
Polyethylene Glycol; Electrolytes: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
Polyethylene Glycol; Electrolytes; Ascorbic Acid: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
Polymyxin B: (Major) The chronic coadministration of systemic polymyxins may increase the risk of developing nephrotoxicity, even in patients who have normal renal function. Nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk for nephrotoxicity when used concurrently. Monitor patients for changes in renal function if these drugs are coadministered. Since Polymyxin B is eliminated by the kidney, coadministration with other potentially nephrotoxic drugs, including nonsteroidal antiinflammatory drugs (NSAIDs), may theoretically increase serum concentrations of either drug.
Potassium: (Moderate) Monitor serum potassium concentrations closely if potassium supplements and nonsteroidal anti-inflammatory drugs (NSAIDs) are used together. Concomitant use may increase the risk of hyperkalemia.
Potassium-sparing diuretics: (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Pralatrexate: (Major) Renal elimination accounts for approximately 34% of the overall clearance of pralatrexate. Concomitant administration of drugs that undergo substantial renal clearance, such as nonsteroidal antiinflammatory drugs (NSAIDs), may result in delayed clearance of pralatrexate.
Pramlintide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Prasugrel: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Prazosin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Prednisolone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Prednisone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Prilocaine; Epinephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Probenecid: (Major) Probenecid can decrease the renal clearance of nonsteroidal antiinflammatory agents (NSAIDs). Reduction of the NSAID dose may be necessary when it is used together with probenecid.
Probenecid; Colchicine: (Major) Probenecid can decrease the renal clearance of nonsteroidal antiinflammatory agents (NSAIDs). Reduction of the NSAID dose may be necessary when it is used together with probenecid. (Minor) The response to sympathomimetics may be enhanced by colchicine.
Procarbazine: (Major) Because procarbazine exhibits some monoamine oxidase inhibitory (MAOI) activity, sympathomimetic drugs should be avoided. As with MAOIs, the use of a sympathomimetic drug with procarbazine may precipitate hypertensive crisis or other serious side effects. In the presence of MAOIs, drugs that cause release of norepinephrine induce severe cardiovascular and cerebrovascular responses. In general, do not use a sympathomimetic drug unless clinically necessary (e.g., medical emergencies, agents like dopamine) within the 14 days prior, during or 14 days after procarbazine therapy. If use is necessary within 2 weeks of the MAOI drug, in general the initial dose of the sympathomimetic agent must be greatly reduced. Patients should be counseled to avoid non-prescription (OTC) decongestants and other drug products, weight loss products, and energy supplements that contain sympathomimetic agents. (Major) Due to the thrombocytopenic effects of procarbazine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Promethazine; Phenylephrine: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Propranolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Propranolol; Hydrochlorothiazide, HCTZ: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Pyridostigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Quinapril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Quinapril; Hydrochlorothiazide, HCTZ: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Quinolones: (Moderate) Use quinolones and nonsteroidal anti-inflammatory drugs (NSAIDs) concomitantly with caution due to potential increased risk of CNS stimulation and convulsive seizures. NSAIDs in combination with very high doses of quinolones have been shown to provoke convulsions in preclinical studies and postmarketing.
Racepinephrine: (Major) Racepinephrine is a sympathomimetic drug with agonist actions at both the alpha and beta receptors. Patients using racepinephrine inhalation are advised to avoid other non-prescription products containing sympathomimetics since additive adverse effects on the cardiovascular and nervous system are possible, some which may be undesirable. Side effects such as nausea, tremor, nervousness, difficulty with sleep, and increased heart rate or blood pressure may be additive. Patients should avoid use of non-prescription decongestants, such as phenylephrine and pseudoephedrine, while using racepinephrine inhalations. Patients should avoid dietary supplements containing ingredients that are reported or claimed to have a stimulant or weight-loss effect, such as ephedrine and ephedra, Ma huang, and phenylpropanolamine. Patients taking prescription sympathomimetic or stimulant medications (including amphetamines, methylphenidate, dexmethylphenidate, isometheptane, epinephrine) should seek health care professional advice prior to the use of racepinephrine inhalations; consider therapeutic alternatives to racepinephrine for these patients.
Ramipril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Rasagiline: (Moderate) The concomitant use of rasagiline and sympathomimetics was not allowed in clinical studies; therefore, caution is advised during concurrent use of rasagiline and sympathomimetics including stimulants for ADHD and weight loss, non-prescription nasal, oral, and ophthalmic decongestants, and weight loss dietary supplements containing Ephedra. Although sympathomimetics are contraindicated for use with other non-selective monoamine oxidase inhibitors (MAOIs), hypertensive reactions generally are not expected to occur during concurrent use with rasagiline because of the selective monoamine oxidase-B (MAO-B) inhibition of rasagiline at manufacturer recommended doses. One case of elevated blood pressure has been reported in a patient during concurrent use of the recommended dose of rasagiline and ophthalmic tetrahydrozoline. One case of hypertensive crisis has been reported in a patient taking the recommended dose of another MAO-B inhibitor, selegiline, in combination with ephedrine. It should be noted that the MAO-B selectivity of rasagiline decreases in a dose-related manner as increases are made above the recommended daily dose and interactions with sympathomimetics may be more likely to occur at these higher doses.
Reserpine: (Major) The cardiovascular effects of sympathomimetics, such as pseudoephedrine, may reduce the antihypertensive effects produced by reserpine. Blood pressure and heart rates should be monitored closely to confirm that the desired antihypertensive effect is achieved. (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Reteplase, r-PA: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
Riluzole: (Moderate) Monitor for signs and symptoms of hepatic injury during coadministration of riluzole and ibuprofen. Concomitant use may increase the risk for hepatotoxicity. Discontinue riluzole if clinical signs of liver dysfunction are present.
Riociguat: (Major) Avoid use of sympathomimetic agents with riociguat. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including riociguat. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Rivaroxaban: (Major) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Rivastigmine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Rosiglitazone: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sacubitril; Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
Safinamide: (Moderate) Severe hypertensive reactions, including hypertensive crisis, have been reported in patients taking monoamine oxidase inhibitors (MAOIs), such as safinamide concurrently with sympathomimetic medications, such as pseudoephedrine. If concomitant use of safinamide and pseudoephedrine is necessary, monitor for hypertension and hypertensive crisis.
Salicylates: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Salmeterol: (Moderate) Caution and close observation should also be used when salmeterol is used concurrently with other adrenergic sympathomimetics, administered by any route, to avoid potential for increased cardiovascular effects.
Salsalate: (Major) Concomitant use of analgesic doses of aspirin with ibuprofen is generally not recommended due to the increased risk of bleeding, including GI bleeding. Concurrent use of aspirin with NSAIDs may significantly increase the incidence of GI adverse reactions and does not produce greater therapeutic effect compared to the use of NSAIDs alone. The use of ibuprofen with other salicylates can also lead to additive GI toxicity. For patients taking low-dose aspirin for cardioprotection who require intermittent analgesics, consider the use of an NSAID that does not interfere with the antiplatelet effect of aspirin, or a non-NSAID analgesic. After discontinuation of ibuprofen in patients taking low-dose aspirin, there may be an increased risk of cardiovascular events due to ibuprofen interference with the antiplatelet effect of aspirin. A decrease in antiplatelet activity (53%) was observed at 24 hours after 6 days of ibuprofen 400 mg/day given 2 hours before immediate-release aspirin 81 mg/day. An interaction was still observed, but minimized, when ibuprofen 400 mg/day was given as early as 8 hours before immediate-release aspirin (90.7%). There was no interaction when ibuprofen 400 mg/day was given 2 hours after the immediate-release aspirin dose (99.2%). In a study with enteric-coated aspirin, subjects given aspirin 81 mg/day with ibuprofen 400 mg 3 times daily (2, 7, and 12 hours after aspirin dose) for 6 days, there was an interaction with antiplatelet activity at 24 hours after the day 6 aspirin dose (67%). An in vitro study has shown that the antagonism of aspirin platelet inhibition probably involves competition at platelet-derived COX-1 and is related to the NSAIDs' ability to inhibit COX-1 mediated thromboxane B2 production in platelets. Clinically, the interaction may be more dramatic with routine as compared with intermittent ibuprofen usage. Quantification of the risk was determined by the analysis of retrospective data, which may be inaccurate and incomplete. However, a trend towards a greater risk of a second myocardial infarction in the year after the initial event among adults taking daily aspirin was associated with a greater length of ibuprofen exposure.
Selective serotonin reuptake inhibitors: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
Selegiline: (Contraindicated) The product label for pseudoephedrine contraindicates use with monoamine oxidase inhibitors (MAOIs) due to the risk of hypertensive crisis. Selegiline is a selective monoamine oxidase inhibitor type B; however, the selectivity of the drug decreases with increasing doses. The manufacturers of selegiline products recommend caution and monitoring of blood pressure during concurrent use with sympathomimetics. Pseudoephedrine should generally not be used concurrently with MAOIs or within 14 days before or after their use.
Selexipag: (Major) Avoid use of sympathomimetic agents with selexipag. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including selexipag. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications.
Semaglutide: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sertraline: (Moderate) The combined use of selective serotonin reuptake inhibitors (SSRIs) and nonsteroidal antiinflammatory drugs (NSAIDs) may increase the risk of bleeding, including an upper GI bleed. SSRIs may inhibit serotonin uptake by platelets, augmenting the antiplatelet effects of NSAIDs. Additionally, NSAIDs impair the gastric mucosa defenses by inhibiting prostaglandin formation. A cohort study in more than 26,000 patients found that SSRI use alone increased the risk for serious GI bleed by 3.6-fold; when an SSRI was combined with NSAIDs, the risk was increased by more than 12.2-fold. The absolute risk of GI bleed from concomitant therapy with NSAIDs and a SSRI was low (17/4107 patients).
SGLT2 Inhibitors: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sibutramine: (Major) Concurrent use of sibutramine with other serotonergic agents may increase the potential for serotonin syndrome or neuroleptic malignant syndrome-like reactions. Serotonin syndrome is characterized by rapid development of hyperthermia, hypertension, myoclonus, rigidity, autonomic instability, mental status changes (e.g., delirium or coma), and in rare cases, death. Serotonin syndrome, in its most severe form, can resemble neuroleptic malignant syndrome.
Sodium Phosphate Monobasic Monohydrate; Sodium Phosphate Dibasic Anhydrous: (Moderate) Concomitant use of medicines with potential to alter renal perfusion or function such as nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the risk of acute phosphate nephropathy in patients taking sodium phosphate monobasic monohydrate; sodium phosphate dibasic anhydrous.
Sodium picosulfate; Magnesium oxide; Anhydrous citric acid: (Moderate) Use caution when prescribing sodium picosulfate; magnesium oxide; anhydrous citric acid in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
Sodium Sulfate; Magnesium Sulfate; Potassium Chloride: (Moderate) Use caution when prescribing sulfate salt bowel preparation in patients taking concomitant medications that may affect renal function such as nonsteroidal anti-inflammatory drugs (NSAIDs).
Solriamfetol: (Moderate) Monitor blood pressure and heart rate during routine coadministration of solriamfetol, a norepinephrine and dopamine reuptake inhibitor, and pseudoephedrine, a CNS stimulant. Concurrent use of solriamfetol and other medications that increase blood pressure and/or heart rate may increase the risk of such effects. Coadministration of solriamfetol with other drugs that increase blood pressure or heart rate has not been evaluated.
Sotalol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Spironolactone: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
Spironolactone; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
St. John's Wort, Hypericum perforatum: (Major) St. John's wort may have MAOI-like activities, and could potentially increase the cardiac stimulation and vasopressor effects of the sympathomimetics. St. John's wort should be used cautiously with any sympathomimetic agent.
Streptokinase: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
Streptomycin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as streptomycin.
Sulfinpyrazone: (Moderate) Sulfinpyrazone is an inhibitor of CYP2C9 and may lead to increased plasma levels of NSAIDs. During concurrent therapy, monitor for potential NSAID-induced toxicity, such as GI irritation or bleeding.
Sulfonylureas: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations. (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Sulindac: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Sumatriptan; Naproxen: (Major) Avoid concomitant use of ibuprofen with any other NSAID due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Tacrine: (Moderate) NSAIDs may cause additive pharmacodynamic GI effects with cholinesterase inhibitors, leading to gastrointestinal intolerance. Patients receiving concurrent NSAIDs should be monitored closely for symptoms of active or occult gastrointestinal bleeding. While NSAIDs appear to suppress microglial activity, which in turn may slow inflammatory neurodegenerative processes important for the progression of Alzheimer's disease (AD), there are no clinical data at this time to suggest that NSAIDs alone or as combined therapy with AD agents result in synergistic effects in AD.
Tacrolimus: (Moderate) Monitor patients for signs of worsening renal function during coadministration of tacrolimus and nonsteroidal antiinflammatory drugs. Coadministration may increase the risk for drug-induced nephrotoxicity.
Telavancin: (Minor) Concurrent or sequential use of telavancin with drugs that inhibit renal prostaglandins such as nonsteroidal antiinflammatory drugs (NSAIDS) may lead to additive nephrotoxicity. Closely monitor renal function and adjust telavancin doses based on calculated creatinine clearance.
Telbivudine: (Moderate) Drugs that alter renal function such as NSAIDs may alter telbivudine plasma concentrations because telbivudine is eliminated primarily by renal excretion. Monitor renal function before and during telbivudine treatment.
Telmisartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
Telmisartan; Amlodipine: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Telmisartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Temozolomide: (Major) Myelosuppression, primarily neutropenia and thrombocytopenia, is the dose-limiting toxicity of temozolomide. Due to the thrombocytopenic effects of temozolomide, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, ASA, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Tenecteplase: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
Teniposide: (Major) Dose-limiting bone marrow suppression is the most significant toxicity associated with teniposide, and may include thrombocytopenia. An additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding. Salicylates also displace protein-bound teniposide in fresh human serum to a small but significant extent. Because of the extremely high binding of teniposide to plasma proteins, these small decreases in binding could cause substantial increases in plasma free drug concentrations that could result in potentiation of teniposide toxicity, including bone marrow suppression.
Tenofovir Alafenamide: (Moderate) Avoid administering tenofovir-containing medications concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine clearance, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
Tenofovir, PMPA: (Moderate) Avoid administering tenofovir, PMPA concurrently with or recently after a nephrotoxic agent, such as high-dose or multiple nonsteroidal antiinflammatory drugs (NSAIDs). Cases of acute renal failure, some requiring hospitalization and renal replacement therapy, have been reported after high-dose or multiple NSAIDs were initiated in patients who appeared stable on tenofovir. Consider alternatives to NSAIDs in patients at risk for renal dysfunction. If these drugs must be coadministered, carefully monitor the estimated creatinine creatinine, serum phosphorus, urine glucose, and urine protein prior to, and periodically during, treatment.
Terazosin: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease.
Terbutaline: (Major) Concomitant use of sympathomimetics with beta-agonists might result in additive cardiovascular effects such as increased blood pressure and heart rate.
Tezacaftor; Ivacaftor: (Minor) Increased monitoring is recommended if ivacaftor is administered concurrently with CYP2C9 substrates, such as ibuprofen. In vitro studies showed ivacaftor to be a weak inhibitor of CYP2C9. Co-administration may lead to increased exposure to CYP2C9 substrates; however, the clinical impact of this has not yet been determined.
Theophylline, Aminophylline: (Moderate) Concurrent administration of theophylline or aminophylline with some sympathomimetics can produce excessive stimulation and effects such as nervousness, irritability, or insomnia. Seizures or cardiac arrhythmias are also possible. (Moderate) Concurrent administration of theophylline or aminophylline with sympathomimetics can produce excessive stimulation manifested by skeletal muscle activity, agitation, and hyperactivity.
Thiazide diuretics: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Thiazolidinediones: (Moderate) Sympathomimetic agents and adrenergic agonists tend to increase blood glucose concentrations when administered systemically. Monitor for loss of glycemic control when pseudoephedrine, phenylephrine, and other sympathomimetics are administered to patients taking antidiabetic agents. Epinephrine and other sympathomimetics, through stimulation of alpha- and beta- receptors, increase hepatic glucose production and glycogenolysis and inhibit insulin secretion. Also, adrenergic medications may decrease glucose uptake by muscle cells. For treatment of cold symptoms, nasal decongestants may be preferable for short term, limited use (1 to 3 days) as an alternative to systemic decongestants in patients taking medications for diabetes.
Thioguanine, 6-TG: (Major) Due to the thrombocytopenic effects of thioguanine, an additive risk of bleeding may be seen in patients receiving concomitant anticoagulants, NSAIDs, platelet inhibitors, including aspirin, strontium-89 chloride, and thrombolytic agents. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Thrombolytic Agents: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
Thyroid hormones: (Moderate) Sympathomimetic amines should be used with caution in patients with thyrotoxicosis since these patients are unusually responsive to sympathomimetic amines. Based on the cardiovascular stimulatory effects of sympathomimetic drugs, the concomitant use of sympathomimetics and thyroid hormones can enhance the effects on the cardiovascular system. Patients with coronary artery disease have an increased risk of coronary insufficiency from either agent. Concomitant use of these agents may increase this risk further. In addition, dopamine at a dose of >= 1 mcg/kg/min and dopamine agonists (e.g., apomorphine, bromocriptine, levodopa, pergolide, pramipexole, ropinirole, rotigotine) may result in a transient reduction in TSH secretion. The reduction in TSH secretion is not sustained; hypothyroidism does not occur.
Ticagrelor: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Ticlopidine: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Timolol: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Minor) Close monitoring of blood pressure or the selection of alternative therapeutic agents to the sympathomimetic agent may be needed in patients receiving a beta-blocker. Sympathomimetics, such as amphetamines, phentermine, and decongestants (e.g., pseudoephedrine, phenylephrine), and many other drugs, may increase both systolic and diastolic blood pressure and may counteract the activity of the beta-blockers. Concurrent use increases the risk of unopposed alpha-adrenergic activity. Increased blood pressure, bradycardia, or heart block may occur due to excessive alpha-adrenergic receptor stimulation.
Tinzaparin: (Moderate) An additive risk of bleeding may be seen in patients receiving anticoagulants in combination with other agents known to increase the risk of bleeding such as nonsteroidal antiinflammatory drugs (NSAIDs). Monitor clinical and laboratory response closely during concurrent use.
Tirofiban: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Tobacco: (Moderate) Concomitant use of nonsteroidal antiinflammatory drugs (NSAIDs) with tobacco smoking may enhance the risk of gastrointestinal (GI) side effects. Tobacco smoking may independently increase the risk of peptic ulcer and GI bleeding, and thus may increase the risk with NSAID usage. Patients using tobacco and NSAIDs concurrently should be monitored closely for GI adverse reactions.
Tobramycin: (Moderate) It is possible that additive nephrotoxicity may occur in patients who receive nonsteroidal anti-inflammatory drugs (NSAIDs) concurrently with other nephrotoxic agents, such as tobramycin.
Tolazamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
Tolbutamide: (Moderate) NSAIDs may enhance hypoglycemia in diabetic patients via inhibition of prostaglandin synthesis, which indirectly increases insulin secretion. If NSAIDs are administered or discontinued in patients receiving oral antidiabetic agents, patients should be monitored for hypoglycemia or loss of blood glucose control. No clinically significant interaction between sulindac at daily doses of 400 mg and oral hypoglycemic agents has been observed. Sulindac, its sulfide metabolite, and sulfonylureas are highly bound to protein. Sulindac could displace the sulfonylureas, altering hypoglycemic activity. Careful patient monitoring is recommended to ensure that no change in their diabetes medicine dosage is required. A sulfonylurea dose adjustment may be needed, especially if sulindac doses greater than 400 mg daily are used or if the drug combination is used in patients with renal impairment or other metabolic defects that might increase sulindac blood concentrations.
Tolmetin: (Major) Avoid concomitant use of ibuprofen with any other NSAID, including COX-2 inhibitors, due to the risk of additive serious NSAID toxicities including but not limited to GI bleeding, GI perforation, or peptic ulcers.
Topiramate: (Moderate) Concurrent use of topiramate and drugs that affect platelet function such as NSAIDs may increase the risk of bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported in patients receiving topiramate (4.5%) compared to placebo (2 to 3%). In those with severe bleeding events, patients were often taking drugs that cause thrombocytopenia or affect platelet function or coagulation.
Torsemide: (Moderate) If a nonsteroidal anti-inflammatory drug (NSAID) and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. Patients taking diuretics and NSAIDs concurrently are at higher risk of developing renal insufficiency. NSAIDs may reduce the natriuretic effect of diuretics in some patients. NSAIDs have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. (Moderate) The cardiovascular effects of sympathomimetics may reduce the antihypertensive effects produced by diuretics. Well-controlled hypertensive patients receiving pseudoephedrine at recommended doses do not appear at high risk for significant elevations in blood pressure; however, increased blood pressure (especially systolic hypertension) has been reported in some patients.
Tositumomab: (Major) The tositumomab therapeutic regimen frequently causes severe and prolonged thrombocytopenia. The potential benefits of medications that interfere with platelet function and/or anticoagulation should be weighed against the potential increased risk of bleeding and hemorrhage. An additive risk of bleeding may be seen in patients receiving concomitant NSAIDs. In addition, large doses of salicylates (>= 3-4 g/day) can cause hypoprothrombinemia, an additional risk factor for bleeding.
Trandolapril: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure.
Trandolapril; Verapamil: (Moderate) In the low-renin or volume-dependent hypertensive patient, prostaglandins play an important role in the hypotensive effects of ACE inhibitors. NSAIDs may attenuate the antihypertensive effects of ACE inhibitors by inhibiting the synthesis of vasodilatory prostaglandins. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, the coadministration of ACE inhibitors may result in a further deterioration of renal function, including acute renal failure. These effects are usually reversible. Therefore, blood pressure and renal function should be monitored closely when an NSAID is administered to a patient taking an ACE inhibitor. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. The potential clinical effects of selective or preferential COX-2 inhibitors are not known. Mean arterial blood pressure increased 3 mmHg in patients receiving ACE inhibitor (benazepril 10 to 40 mg daily for 4 weeks) with rofecoxib 25 mg once daily compared to the ACE inhibitor regimen alone. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by angiotensin-converting enzyme inhibitors. Monitor heart rate and blood pressure. (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Tranylcypromine: (Contraindicated) In general, sympathomimetics should be avoided in patients receiving MAOIs due to an increased risk of hypertensive crisis. This applies to sympathomimetics including stimulants for ADHD, narcolepsy or weight loss, nasal, oral, and ophthalmic decongestants and cold products, and respiratory sympathomimetics (e.g., beta agonist drugs). Some local anesthetics also contain a sympathomimetic (e.g., epinephrine). In general, medicines containing sympathomimetic agents should not be used concurrently with MAOIs or within 14 days before or after their use.
Trazodone: (Moderate) Platelet aggregation may be impaired by trazodone due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Patients should be instructed to monitor for signs and symptoms of bleeding while taking trazodone concurrently with medications that impair platelet function and to promptly report any bleeding events to the practitioner.
Treprostinil: (Major) Avoid use of sympathomimetic agents with treprostinil. Sympathomimetics counteract the medications used to stabilize pulmonary hypertension, including treprostinil. Sympathomimetics can increase blood pressure, increase heart rate, and may cause vasoconstriction resulting in chest pain and shortness of breath in these patients. Patients should be advised to avoid amphetamine drugs, decongestants (including nasal decongestants) and sympathomimetic anorexiants for weight loss, including dietary supplements. Intravenous vasopressors may be used in the emergency management of pulmonary hypertension patients when needed, but hemodynamic monitoring and careful monitoring of cardiac status are needed to avoid ischemia and other complications. (Moderate) NSAIDs may decrease the effect of antihypertensive agents through various mechanisms, including renal and peripheral vasoactive pathways.
Tretinoin, ATRA: (Moderate) The concomitant use of systemic tretinoin, ATRA and ibuprofen should be done cautiously due to the potential for increased intracranial pressure and an increased risk of pseudotumor cerebri (benign intracranial hypertension). Early signs and symptoms of pseudotumor cerebri include papilledema, headache, nausea, vomiting, and visual disturbances.
Triamcinolone: (Moderate) Although some patients may need to be given corticosteroids and NSAIDs concomitantly, which can be done successfully for short periods of time without sequelae, prolonged concomitant administration should be avoided. Concomitant use of corticosteroids appears to increase the risk of adverse GI events due to NSAIDs. Corticosteroids can have profound effects on sodium-potassium balance; NSAIDs also can affect sodium and fluid balance. Monitor serum potassium concentrations; potassium supplementation may be necessary. In addition, NSAIDs may mask fever, pain, swelling and other signs and symptoms of an infection; use NSAIDs with caution in patients receiving immunosuppressant dosages of corticosteroids. The Beers criteria recommends that this drug combination be avoided in older adults; if coadministration cannot be avoided, provide gastrointestinal protection.
Triamterene: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
Triamterene; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Tricyclic antidepressants: (Major) Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to certain sympathomimetic agents, such as pseudoephedrine. TCAs inhibit norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, the patient might experience hypertension, headache, tremor, palpitations, chest pain, or irregular heartbeat.
Umeclidinium; Vilanterol: (Moderate) Administer sympathomimetics with caution with beta-agonists such as vilanterol. The cardiovascular effects of beta-2 agonists may be potentiated by concomitant use. Monitor the patient for tremors, nervousness, increased heart rate, or other additive side effects.
Urea: (Moderate) Nonsteroidal anti-inflammatory drugs (NSAIDs) may reduce the natriuretic effect of diuretics in some patients. NSAIDS have been associated with an inhibition of prostaglandin synthesis, which may result in reduced renal blood flow leading to renal insufficiency and increases in blood pressure that are often accompanied by peripheral edema and weight gain. Patients taking diuretics and NSAIDS concurrently are at higher risk of developing renal insufficiency. If an NSAID and a diuretic are used concurrently, carefully monitor the patient for signs and symptoms of decreased renal function and diuretic efficacy.
Urokinase: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, prolong bleeding time; these pharmacodynamic effects may be increased when administered to patients receiving thrombolytic agents. Patients receiving these drugs concurrently should be monitored closely for bleeding.
Valacyclovir: (Moderate) Monitor patients for signs of worsening renal function during coadministration of valacyclovir and nonsteroidal antiinflammatory drugs. Coadministration may increase the risk for drug-induced nephrotoxicity.
Valganciclovir: (Minor) Concurrent use of nephrotoxic agents, such as NSAIDs, with valganciclovir should be done cautiously to avoid additive nephrotoxicity.
Valsartan: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible.
Valsartan; Hydrochlorothiazide, HCTZ: (Moderate) Nonsteroidal antiinflammatory drugs (NSAIDs) (including selective COX-2 inhibitors) may alter the response to Angiotensin II receptor blockers due to inhibition of vasodilatory prostaglandins. Among NSAIDs, indomethacin, naproxen, and piroxicam may have the greatest pressor effect, while the effects of sulindac and nabumetone may be significantly less. In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function who are being treated with NSAIDs, coadministration of angiotensin II receptor antagonists may result in further deterioration of renal function, including acute renal failure. These effects are usually reversible. (Moderate) Sympathomimetics can antagonize the effects of antihypertensives when administered concomitantly.
Vancomycin: (Minor) It is possible that additive nephrotoxicity may occur in patients who receive NSAIDs concurrently with other nephrotoxic agents, including vancomycin.
Vasodilators: (Moderate) If nonsteroidal anti-inflammatory drugs (NSAIDs) and an antihypertensive drug are concurrently used, carefully monitor the patient for signs and symptoms of renal insufficiency and blood pressure control. Doses of antihypertensive medications may require adjustment in patients receiving concurrent NSAIDs. NSAIDs, to varying degrees, have been associated with an elevation in blood pressure. This effect is most significant in patients receiving concurrent antihypertensive agents and long-term NSAID therapy. NSAIDs cause a dose-dependent reduction in prostaglandin formation, which may result in a reduction in renal blood flow leading to renal insufficiency and an increase in blood pressure that are often accompanied by peripheral edema and weight gain. Patients who rely upon renal prostaglandins to maintain renal perfusion may have acute renal blood flow reduction with NSAID usage. Elderly patients may be at increased risk of adverse effects from combined long-term NSAID therapy and antihypertensive agents, especially diuretics, due to age-related decreases in renal function and an increased risk of stroke and coronary artery disease. (Moderate) Use sympathomimetic agents with caution in patients receiving therapy for hypertension. Patients should be monitored to confirm that the desired antihypertensive effect is achieved. Sympathomimetics can increase blood pressure and heart rate, and antagonize the antihypertensive effects of vasodilators when administered concomitantly. Anginal pain may be induced when coronary insufficiency is present.
Vasopressin, ADH: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Vasopressors: (Major) Pseudoephedrine can potentiate the effects and increase the toxicity of other sympathomimetics by adding to their sympathomimetic activity. Although no data are available, pseudoephedrine should be used cautiously in patients using significant quantities of other sympathomimetics.
Vemurafenib: (Major) Concomitant use of vemurafenib and ibuprofen may result in increased ibuprofen concentrations. Vemurafenib is a CYP2C9 inhibitor and ibuprofen is a CYP2C9 substrate. Patients should be monitored for toxicity.
Venlafaxine: (Moderate) Platelet aggregation may be impaired by venlafaxine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Monitor patients for signs and symptoms of bleeding when coadministering venlafaxine with NSAIDs.
Verapamil: (Moderate) The cardiovascular effects of pseudoephedrine may reduce the antihypertensive effects produced by calcium-channel blockers. Monitor blood pressure and heart rate.
Verteporfin: (Moderate) Use caution if coadministration of verteporfin with nonsteroidal anti-inflammatory drugs is necessary due to the risk of decreased verteporfin efficacy. Oxaprozin may additionally worsen photosensitivity. Verteporfin is a light-activated drug. Once activated, local damage to neovascular endothelium results in a release of procoagulant and vasoactive factors resulting in platelet aggregation, fibrin clot formation, and vasoconstriction. Concomitant use of drugs that decrease platelet aggregation like nonsteroidal anti-inflammatory drugs could decrease the efficacy of verteporfin therapy.
Vilazodone: (Moderate) Platelet aggregation may be impaired by vilazodone due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Patients should be instructed to monitor for signs and symptoms of bleeding while taking vilazodone concurrently with NSAIDs and to promptly report any bleeding events to the practitioner.
Voclosporin: (Moderate) Concomitant use of voclosporin and nonsteroidal anti-inflammatory drugs (NSAIDs) may result in additive nephrotoxicity. Monitor for renal toxicity if concomitant use is required.
Vorapaxar: (Moderate) NSAIDs can cause GI bleeding, inhibit platelet aggregation, and prolong bleeding time. If NSAIDs are administered with platelet inhibitors, these pharmacodynamic effects may be increased. The manufacturer of clopidogrel advises that caution be used when used in combination with NSAIDs as an increase in occult GI blood loss occurred when clopidogrel was used concomitantly with naproxen
Voriconazole: (Moderate) Voriconazole is a substrate and inhibitor of cytochrome P450 isoenzyme 2C9, which is the isoenzyme responsible for the metabolism of ibuprofen. Thus, increased plasma concentrations of ibuprofen is possible. The clinical significance of this potential interaction is unknown. If voriconazole is administered concurrently with ibuprofen, monitor for NSAID-related side-effects, such as fluid retention or GI irritation, and adjust the dose of the NSAID, if needed.
Vortioxetine: (Moderate) Platelet aggregation may be impaired by vortioxetine due to platelet serotonin depletion, possibly increasing the risk of a bleeding complication (e.g., gastrointestinal bleeding, ecchymoses, epistaxis, hematomas, petechiae, hemorrhage) in patients receiving nonsteroidal antiinflammatory drugs (NSAIDs). Bleeding events related to drugs that inhibit serotonin reuptake have ranged from ecchymosis to life-threatening hemorrhages. Patients should be instructed to monitor for signs and symptoms of bleeding while taking vortioxetine concurrently with medications which impair platelet function and to promptly report any bleeding events to the practitioner.
Warfarin: (Moderate) Monitor patients for signs or symptoms of bleeding during concurrent use of warfarin and nonsteroidal antiinflammatory drugs (NSAIDs).To minimize the potential for GI bleeding, use the lowest effective NSAID dose for the shortest possible duration. If signs or symptoms of bleeding occur, promptly evaluate and treat. Systemic hematological effects may also occur with the use of topical NSAIDs. NSAIDs inhibit platelet aggregation and may prolong bleeding time in some patients.
Yohimbine: (Major) At high doses, yohimbine may nonselectively inhibit MAO and also, at normal doses, activates the sympathetic nervous system. Traditional MAOIs can cause serious adverse effects when taken concomitantly with sympathomimetics.
Zafirlukast: (Minor) Zafirlukast inhibits the CYP2C9 isoenzymes and should be used cautiously should be used cautiously in patients stabilized on drugs metabolized by CYP2C9, such as ibuprofen.
Products containing ibuprofen and pseudoephedrine provide decongestant, antipyretic, and analgesic properties to relieve symptoms including nasal congestion, headache, mild pain, and fever.
-Ibuprofen: Ibuprofen competitively inhibits both cyclooxygenase (COX) isoenzymes, COX-1 and COX-2, by blocking arachidonate binding resulting in analgesic, antipyretic, and anti-inflammatory pharmacologic effects. The enzymes COX-1 and COX-2 catalyze the conversion of arachidonic acid to prostaglandin G2 (PGG2), the first step of the synthesis prostaglandins and thromboxanes that are involved in rapid physiological responses. It appears that the antiinflammatory effects may be primarily due to inhibition of the COX-2 isoenzyme. However, COX-1 is expressed at some sites of inflammation. COX-1 is expressed in the joints of rheumatoid arthritis or osteoarthritis patients, especially the synovial lining, and it is the primary enzyme of prostaglandin synthesis in human bursitis. Ibuprofen is slightly more selective for COX-1 than COX-2.
-Pseudoephedrine: Pseudoephedrine is an agonist at both alpha- and, to a lesser degree, beta-adrenergic receptors. Like ephedrine, pseudoephedrine also has an indirect effect by releasing norepinephrine from its storage sites. By stimulating alpha-adrenergic receptors in the mucosa of the respiratory tract, pseudoephedrine shrinks swollen nasal mucous membranes; reduces tissue hyperemia, edema, and nasal congestion; and increases nasal airway patency. Also, drainage of sinus secretions is increased, and obstructed eustachian ostia may be opened. Oral administration of pseudoephedrine usually produces negligible effects on blood pressure. In some patients, especially those with preexisting cardiac disease receiving higher doses, pseudoephedrine may increase blood pressure or irritability of the heart muscle and may affect ventricular conduction.
Ibuprofen; pseudoephedrine is administered orally.
-Ibuprofen: Ibuprofen is highly protein-bound (about 90 to 99%) and undergoes biotransformation in the liver. Plasma half-life is between 2 and 4 hours. Ibuprofen is excreted in the urine, 50 to 60% as metabolites and approximately 10% as unchanged drug. Excretion is usually complete within 24 hours of oral administration.
-Pseudoephedrine: Pseudoephedrine is presumed to cross the placenta, blood brain barrier, and may be distributed into breast milk. Pseudoephedrine is incompletely metabolized in the liver to norpseudoephedrine, the primary active metabolite. The drug and metabolite are excreted in the urine, with 55 to 75% excreted as unchanged drug. The elimination half-life of the drug ranges from 9 to 16 hours dependent primarily upon urinary pH. The rate of urinary excretion is accelerated upon urinary acidification to a pH near 5. Upon alkalinization of the urine to a pH of approximately 8, some of the drug is reabsorbed into the kidney tubule and the rate of urinary excretion is slowed.
-Route-Specific Pharmacokinetics
Oral Route
-Ibuprofen: Ibuprofen is approximately 80% absorbed from the gut; the suspended form is absorbed at about twice the rate of the tablet form. Although absorption is slower if the drug is taken with food, the extent of absorption is not affected. Peak serum concentrations are reached 1 to 2 hours after a dose.
-Pseudoephedrine: Pseudoephedrine is generally well-absorbed, and its absorption is not affected by food.
-Special Populations
Hepatic Impairment
-Pseudoephedrine: The effect of liver disease on pseudoephedrine pharmacokinetics is unknown.
Renal Impairment
-Pseudoephedrine: Renal impairment significantly reduces pseudoephedrine clearance. The effect of hemodialysis on the removal of pseudoephedrine is unknown.